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Training Error

First, we can prove that the training error goes down. If we write the the
error at time t as 5 — 71+,

R(h) Sexp{—zzyf} )
t

= IfVt:y;>7>0, then R(h) <exp{—2y2T}

Adaboost: do not need y or T a priori
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Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

Dy(i)exp {—aryihy(x;)}

Diia (i) = > @
Dy_y (i)exp{—a1yih—1 (%)} exp {—aryihe(x)}
3)
Zi1Zy
exp [y XL () o
ml—[§:1 Zs
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Training Error Intuition

= On round t weight of examples incorrectly classified by h; is increased
= |f x; incorrectly classified by Hr, then x; wrong on (weighted) majority of
hy's
o If x; incorrectly classified by Hy, then x; must have large weight under Dy
o But there can’t be many of them, since total weight <1
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Training Error Proof: It’s all about the Normalizers

A(h) =1; 2. 11g(x) <0] (5)

Definition of training error
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Training Error Proof: It’s all about the Normalizers

R 1 &
A(h)=—> 1lya(x) <0] (5)

i=1

1 m
SE;exp {=vig(x)} (6)
(7)

1[u<0] <exp—uis true for all real u.
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Training Error Proof: It’s all about the Normalizers

. 1<
A(h)=—> 1lya(x) <0] ©)

i=1

1 m
SE;exp {=vig(x)} (6)
@)

Final distribution D, (/)

exp{—y; > _, ashs(x)}
] ) -2

Dry+(i) =
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Training Error Proof: It’s all about the Normalizers

m

L
A(h) =—> 1g(x)<0] (5)
i=1

S:—n;exp{—yfg(xi)} (6)

1 m T
:EZlml_IZt Dry4(i) ()

=L 1=
(8)

m’s cancel, D is a distribution
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Training Error Proof: It’s all about the Normalizers

m

1

== ;1 vig(x) < 0] (5)
1 m

Sn_v 2 exp{—yig(x)} (6)
1 m
E;[’"UZ' Dr+(i) (7)
T

=] 1z (8)
t=1
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Training Error Proof: Weak Learner Errors

Single Weak Learner

2= Di(i)exp {—aryim(x)} (9)
i=1

(10)

= (11)

= (12)
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Z,=> Dy(i)exp{—awihi(x)} (9)
i=1
= > Dexpi—ad+ Y. Di)explar} (10)
i-right i:wrong
= (11)
_ (12)
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Z,=> Dy(i)exp{—awihi(x)} (9)
i=1
= > Dexpi—ad+ Y. Di)explar} (10)
i-right i:wrong
=(1—e€r)exp{—a;} +eexpias} (11)
= (12)
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Training Error Proof: Weak Learner Errors

Single Weak Learner

z,=> Dy(i)exp{—ayimi(x)} (9)
i=1
= > Di)expi-a}+ . Dyi)expla (10)
i:right i:wrong
=(1—€r)exp{—a;} + eexp{as} (11)
1—6t
1_€t + [ (12)
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Normalization Product

T T 1 2
[[z=] [2Ve(1—e)=\ 1—4(§—et) (10)
t=1 =1
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Training Error Proof: Weak Learner Errors

Normalization Product

T T 2
I_IZt—I_IZV €t(1—€t): 1—4(——62\) (9)
t=1 t=1

T 1 2
<Dexp{—2(§—6t) } (10)
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Training Error Proof: Weak Learner Errors

Normalization Product
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Generalization

VC Dimension
<2(d+1)(T+1)Ig[(T+1)e]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L; margin, and the
weak learnability assumption requires data to be linearly separable with
margin 2y
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