

Boosting: Theory

Machine Learning: Jordan Boyd-Graber University of Maryland

Training Error

First, we can prove that the training error goes down. If we write the the error at time t as $\frac{1}{2} - \gamma_t$,

$$\hat{R}(h) \le \exp\left\{-2\sum_{t} \gamma_{t}^{2}\right\} \tag{1}$$

• If $\forall t : \gamma_t \ge \gamma > 0$, then $\hat{R}(h) \le \exp\{-2\gamma^2 T\}$

Adaboost: do not need γ or T a priori

Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

$$D_{t+1}(i) = \frac{D_t(i)\exp\left\{-\alpha_t y_i h_t(x_i)\right\}}{Z_t}$$
 (2)

$$\frac{D_{t-1}(i)\exp\{-\alpha_{t-1}y_ih_{t-1}(x_i)\}\exp\{-\alpha_ty_ih_t(x_i)\}}{Z_{t-1}Z_t}$$
 (3)

$$\frac{\exp\left\{-y_i \sum_{s=1}^t \alpha_s h_s(x_i)\right\}}{m \prod_{s=1}^t Z_s} \tag{4}$$

Training Error Intuition

- On round t weight of examples incorrectly classified by h_t is increased
- If x_i incorrectly classified by H_T , then x_i wrong on (weighted) majority of h_t 's
 - If x_i incorrectly classified by H_T , then x_i must have large weight under D_T
 - But there can't be many of them, since total weight ≤ 1

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (5)

(6)

Definition of training error

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (5)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\} \tag{6}$$

(7)

 $\mathbb{1}[u \le 0] \le \exp -u$ is true for all real u.

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (5)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\} \tag{6}$$

Final distribution $D_{t+1}(i)$

$$D_{t+1}(i) = \frac{\exp\{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\}}{m \prod_{s=1}^{t} Z_s}$$
(8)

(7)

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (5)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\} \tag{6}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_{t} \right] D_{T+1}(i)$$
 (7)

(8)

m's cancel. D is a distribution

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (5)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\} \tag{6}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_{t} \right] D_{T+1}(i)$$
 (7)

$$=\prod_{t=1}^{T} Z_t \tag{8}$$

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
 (9)

$$= (10)$$

$$= (12)$$

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp\left\{-\alpha_{t} y_{i} h_{t}(x_{i})\right\}$$

$$= \sum_{i: \text{right}} D_{t}(i) \exp\left\{-\alpha_{t}\right\} + \sum_{i: \text{wrong}} D_{t}(i) \exp\left\{\alpha_{t}\right\}$$
(10)

$$= \sum_{i: \text{right}} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
 (10)

$$= (12)$$

$$Z_t = \sum_{i=1}^m D_t(i) \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(9)

$$= \sum_{i: \text{right}}^{i-1} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
 (10)

$$= (1 - \epsilon_t) \exp\{-\alpha_t\} + \epsilon_t \exp\{\alpha_t\}$$
 (11)

$$= (12)$$

$$Z_t = \sum_{i=1}^m D_t(i) \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(9)

$$= \sum_{i: \text{right}} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
 (10)

$$= (1 - \epsilon_t) \exp\{-\alpha_t\} + \epsilon_t \exp\{\alpha_t\}$$
 (11)

$$= (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$$
 (12)

Single Weak Learner

$$Z_{t} = (1 - \epsilon_{t}) \sqrt{\frac{\epsilon_{t}}{1 - \epsilon_{t}}} + \epsilon_{t} \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$
(9)

Normalization Product

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_{t}\right)^{2}}$$
 (10)

(11)

Normalization Product

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_{t}\right)^{2}}$$
 (9)

$$\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\} \tag{10}$$

(11)

Normalization Product

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_{t}\right)^{2}}$$
 (9)

$$\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\} \tag{10}$$

$$=\exp\left\{-2\sum_{t=1}^{T}\left(\frac{1}{2}-\epsilon_{t}\right)^{2}\right\} \tag{11}$$

Generalization

VC Dimension

$$\leq 2(d+1)(T+1)\lg[(T+1)e]$$

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L_1 margin, and the weak learnability assumption requires data to be linearly separable with margin 2γ