Representation Learning

Natural Language Processing
University of Maryland

Update Examples

Imports

import numpy as np
import torch

Simple Regression

= torch.tensor (0.)

= torch.tensor (2., requires_grad=True)

= torch.tensor (30., requires_grad=True)

If you forget "requires_grad", expect this error:
RuntimeError: element 0 of tensors does not require

H % O = X

def forward(x):
return w * x + b

Try it out!

e Try to predict from input of 20

Inputs and Outputs

inputs = torch.tensor ([
targets = torch.tensor (
[14
[59
[86
[12

Inputs and Outputs

inputs = torch.tensor ([

targets = torch.tensor ([[-40],
(147,

12217)
What are we predicting? What are predictions on inputs?

Current Predictions

tensor ([[1,
[1,
[60.1,
[1,
[1]

, grad_fn=<AddBackward0>)

Current Predictions

tensor ([[.1y,
[-1y
[60.1,
[-1y

.11

[130 , grad_fn=<AddBackward0>)

What's the MSE loss of these predictions?

Loss Function

def mse(tl, t2):
diff tl - t2
return torch.mean (diff**2)

loss = mse (preds, targets)

>>> print (loss)
tensor (39.4000, grad_fn=<MeanBackward0>)

Loss Function

def mse(tl, t2):
diff = tl - t2
return torch.mean (diff**2)

loss = mse (preds, targets)

>>> print (loss)
tensor (39.4000, grad_fn=<MeanBackward0>)

Next: create backpropagation signal to w and b!

loss.backward ()

print ("Backprop signal to w:")
print (w)

print (w.grad)

print ("Backprop signal to b:")
print (b)
print (b.grad)

Gradients

Backprop signal to w:

tensor (2., requires_grad=True)
tensor (390.)

Backprop signal to b:

tensor (30., requires_grad=True)
tensor (-0.4000)

Gradients

Backprop signal to w:

tensor (2., requires_grad=True)
tensor (390.)

Backprop signal to b:

tensor (30., requires_grad=True)
tensor (-0.4000)

What is this saying about w and b?

Learning rate details and multi-objective optimization

e Correct formula is 9
c
f= 5 +32 (1)

e w should be smaller and b should be bigger

e |earning rate and batch size are important, trust Pytorch to do
better job!

Learning rate details and multi-objective optimization

Correct formula is

f—90+32
5

w should be smaller and b should be bigger

e |earning rate and batch size are important, trust Pytorch to do
better job!

Update parameters

Parameter updates

with torch.no_grad() :
w —= w.grad * le—4
b —= b.grad « le-4

w.grad.zero_ ()
b.grad.zero_ ()

Parameter updates

with torch.no_grad() :
w —= w.grad *x le-4
b —= b.grad « le-4

w.grad.zero_ ()
b.grad.zero_ ()

What are predictions and loss now?

New predictions and loss

New predictions:

tensor ([[-48.
[10
[59
[88
[128
New loss:

tensor (25.8098,

4400

1,
.39007],
.41507],
.83007],
.0500]1], grad_fn=<AddBackward0>)

grad_fn=<MeanBackward0>)

