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Abstract
Apple’s iMessage is one of the most widely-deployed
end-to-end encrypted messaging protocols. Despite its
broad deployment, the encryption protocols used by
iMessage have never been subjected to rigorous crypt-
analysis. In this paper, we conduct a thorough analy-
sis of iMessage to determine the security of the proto-
col against a variety of attacks. Our analysis shows that
iMessage has significant vulnerabilities that can be ex-
ploited by a sophisticated attacker. In particular, we out-
line a novel chosen ciphertext attack on Huffman com-
pressed data, which allows retrospective decryption of
some iMessage payloads in less than 218 queries. The
practical implication of these attacks is that any party
who gains access to iMessage ciphertexts may poten-
tially decrypt them remotely and after the fact. We ad-
ditionally describe mitigations that will prevent these at-
tacks on the protocol, without breaking backwards com-
patibility. Apple has deployed our mitigations in the lat-
est iOS and OS X releases.

1 Introduction

The past several years have seen widespread adoption of
end-to-end encrypted text messaging protocols. In this
work we focus on one of the most popular such proto-
cols: Apple’s iMessage. Introduced in 2011, iMessage
is an end-to-end encrypted text messaging system that
supports both iOS and OS X devices. While Apple does
not provide up-to-date statistics on iMessage usage, in
February 2016 an Apple executive noted that the system
had a peak transmission rate of more then 200,000 mes-
sages per second, across 1 billion deployed devices [12].

The broad adoption of iMessage has been controver-
sial, particularly within the law enforcement and national
security communities. In 2013, the U.S. Drug Enforce-
ment Agency deemed iMessage “a challenge for DEA
intercept” [22], while in 2015 the U.S. Department of

Justice accused Apple of thwarting an investigation by
refusing to turn over iMessage plaintext [11]. iMes-
sage has been at the center of a months-long debate
initiated by U.S. and overseas officials over the imple-
mentation of “exceptional access” mechanisms in end-
to-end encrypted communication systems [7, 26, 33], and
some national ISPs have temporarily blocked the proto-
col [32]. Throughout this controversy, Apple has consis-
tently maintained that iMessage encryption is end-to-end
and that even Apple cannot recover the plaintext for mes-
sages transmitted through its servers [10].

Given iMessage’s large installed base and the high
stakes riding on its confidentiality, one might expect
iMessage to have received critical attention from the re-
search community. Surprisingly, there has been very lit-
tle analysis of the system, in large part due to the fact that
Apple has declined to publish the details of iMessage’s
encryption protocol. In this paper we aim to remedy this
situation. Specifically, we attempt to answer the follow-
ing question: how secure is Apple iMessage?

Our contributions. In this work we analyze the iMessage
protocol and identify several weaknesses that an attacker
may use to decrypt iMessages and attachments. While
these flaws do not render iMessage completely insecure,
some flaws reduce the level of security to that of the TLS
encryption used to secure communications between end-
user devices and Apple’s servers. This finding is surpris-
ing given the protection claims advertised by Apple [10].
Moreover, we determine that the flaws we detect in iMes-
sage may have implications for other aspects of Apple’s
ecosystem, as we discuss below.

To perform our analysis, we derived a specification for
iMessage by conducting a partial black-box reverse engi-
neering of the protocol as implemented on multiple iOS
and OS X devices. Our efforts extend a high-level pro-
tocol overview published by Apple [9] and two existing
partial reverse-engineering efforts [1, 34]. Armed with a
protocol specification, we conducted manual cryptanal-
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ysis of the system. Specifically, we tried to determine
the system’s resilience to both back-end infrastructure at-
tacks and more restricted attacks that subvert only client-
local networks.

Our analysis uncovered several previously unreported
vulnerabilities in the iMessage protocol. Most sig-
nificantly, we identified a practical adaptive chosen-
ciphertext attack on the iMessage encryption mechanism
that allows us to retrospectively decrypt certain iMessage
payloads and attachments, provided that a single Sender
or Recipient device is online. To validate this finding,
we implemented a proof of concept exploit against our
own test devices and show that the attack can be con-
ducted remotely (and silently) against any party with an
online device. This exploit is non-trivial, and required
us to develop novel exploit techniques, including a new
chosen ciphertext attack that operates against ciphertexts
containing gzip compressed data. We refer to this tech-
nique as a gzip format oracle attack, and we believe it
may have applications to other encryption protocols. We
discuss the details of this attack in §5.

We also demonstrate weaknesses in the device reg-
istration and key distribution mechanisms of iMessage.
One weakness we exploit has been identified by the re-
verse engineering efforts in [34], while another is novel.
As they are not the main result of this work, we include
them in Appendix A for completeness.

Overall, our determination is that while iMessage’s
end-to-end encryption protocol is an improvement over
systems that use encryption on network traffic only (e.g.,
Google Hangouts), messages sent through iMessage may
not be secure against sophisticated adversaries. Our re-
sults show that an attacker who obtains iMessage cipher-
texts can, at least for some types of messages, retrospec-
tively decrypt traffic. Because Apple stores encrypted,
undelivered messages on its servers and retains them for
up to 30 days, such messages are vulnerable to any party
who can obtain access to this infrastructure, e.g., via
court order [11], or by compromising Apple’s globally-
distributed server infrastructure [36]. Similarly, an at-
tacker who can intercept TLS using a stolen certificate
may be able to intercept iMessages on certain versions of
iOS and Mac OS X that do not employ certificate pinning
on Apple Push Network Services (APNs) connections.

Given the wide deployment of iMessage, and the at-
tention paid to iMessage by national governments, these
threats do not seem unrealistic. Fortunately, the vulnera-
bilities we discovered in iMessage are relatively straight-
forward to repair. In the final section of this paper, we
offer a set of mitigations that will restore strong crypto-
graphic security to the iMessage protocol. Some of these
are included in iOS 9.3 and Mac OS X 10.11.4, which
shipped in March 2016.

Other uses of the iMessage encryption protocol. While

our work primarily considers the iMessage instant mes-
saging system, we note that the vulnerabilities identified
here go beyond iMessage. Apple documentation notes
that Apple’s “Handoff” service, which transmits per-
sonal data between Apple devices over Bluetooth Low
Energy, encrypts messages “in a similar fashion to iMes-
sage” [9]. This raises the possibility that our attacks on
iMessage encryption may also affect intra-device com-
munication channels used between Apple devices. At-
tacks on this channel are particularly concerning because
these functions are turned on by default in many new
Apple devices. We did not investigate these attack vec-
tors in this work but subsequent discussions with Apple
have confirmed that Apple uses the same encryption im-
plementation to secure both iMessage and intra-device
communications. Thus, securing these channels is one
side effect of the mitigations we propose in §7.

1.1 Responsible disclosure
In November 2015 we delivered to Apple a summary of
the results in this paper. Apple acknowledged the vulner-
ability in §5 and has initiated substantial repairs to the
iMessage system. These repairs include: enforcing cer-
tificate pinning across all channels used by iMessage,1
removing compression from the iMessage composition
(for attachment messages), and developing a fix based
on our proposed “duplicate ciphertext detection” mitiga-
tion (see §7). Apple has also made changes to the use of
iMessage in inter-device communications such as Hand-
off, although the company has declined to share the de-
tails with us. The repairs are included in iOS 9.3 and OS
X 10.11.4, which shipped in March 2016.

1.2 Attack Model
Our attacks in §5 require the ability to obtain iMessage
ciphertexts sent to or received by a client. Because Apple
Push Network Services (APNs) uses TLS to transmit en-
crypted messages to Apple’s back-end servers, exploit-
ing iMessage requires either access to data from Apple’s
servers or a forged TLS certificate. We stress that while
this is a strong assumption, it is the appropriate threat
model for considering end-to-end encrypted protocols.

A more interesting objection to this threat model is
the perception that iMesssage might be too weak to sat-
isfy it. For example, in 2013 Raynal et al. pointed out
a simple attack on Apple’s key distribution that enables
a TLS MITM attacker to replace the public key of a re-
cipient with an attacker-chosen key [34]. One finding of
this work is that as of December 2015 such attacks have
been entirely mitigated by Apple through the addition of

1This feature was added to OS X 10.11 in December, as a result of
our notification.
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certificate pinning on key server connections (see Ap-
pendix A). More fundamentally, however, such attacks
are prospective – in the sense that they require the at-
tacker to target a particular individual before the individ-
ual begins communicating. By contrast, the attacks we
describe in this paper are retrospective. They can be run
against any stored message content, at any point subse-
quent to communication, provided that one target device
remains online. Moreover, unlike previous attacks which
require access to the target’s local network, our attacks
may be run remotely through Apple’s infrastructure.

2 The iMessage Protocol

To obtain the full iMessage specification, we began with
the security overview provided by Apple, as well as a de-
tailed previous software reverse-engineering efforts con-
ducted by Raynal [34] and others [1]. While these pre-
vious results provide some details of the protocol, they
omit key details of the encryption mechanism, as well
as the complete key registration and notification mecha-
nisms. We conducted additional black-box reverse engi-
neering efforts to recover these elements. Specifically,
we analyzed and modified protocol exchanges to and
from several jailbroken and non-jailbroken Apple de-
vices.2 In conformity to Apple’s terms of service, we
did not perform any software decompilation.

2.1 System overview

iMessage clients. iMessage clients comprise several
pieces of software running on end-user devices. On iOS
and OS X devices, the primary user-facing component is
the Messages application. On OS X computers, this ap-
plication interacts with at least three daemons: apsd, the
daemon responsible for pushing and pulling application
traffic over the Apple Push Notification Service (APNs)
channel; imagent, a daemon that pulls notifications even
if Messages is closed; and identityservicesd, a dae-
mon which maintains a cache of other users’ keys. iOS
devices also contain an apsd daemon, while other dae-
mons handle the task of managing identities.

Apple services. iMessage clients interact with multiple
back-end services operated by Apple and its partners. We
focus on the two most relevant to our attack. The Apple
directory service (IDS, also known as ESS) maintains a
mapping between user identities and public keys and is
responsible for distributing user public keys on request.
iMessage content is transmitted via the Apple Push No-
tification Service (APNs). Long iMessages and attach-
ments are transmitted by uploading them to the iCloud

2In this analysis we considered iOS 6, 8, and 9 devices, as well as
Mac clients running OS X 10.10.3, 10.10.5, and 10.11.1.

service, which is operated by Apple using both their own
servers and virtual servers provisioned on Amazon AWS,
Microsoft Azure, and Google’s Cloud Platform.

Identity and registration The basic unit of identity in
iMessage is the iCloud account name, which typically
consists of an email address or phone number controlled
by the user. End-user devices are registered to the iCloud
service by associating them with an account. The map-
ping between client devices and accounts is not one-to-
one: a single account may be used across multiple de-
vices, and similarly, multiple accounts can be associated
with a single device. We give further information about
the registration process in Appendix A.

Message encryption and decryption To transmit a
message to some list of Recipient IDs, the Sender’s
iMessage client first contacts the IDS to obtain the pub-
lic key(s) PK1, . . . ,PKD and a list of APNs push to-
kens associated with the Sender and Recipient identi-
ties.3 It then encodes the Sender and Recipient ad-
dresses and plaintext message into a binary plist key-
value data structure and compresses this structure using
the gzip compression format. The client next gener-
ates a 128-bit AES session key K and encrypts the re-
sulting compressed message using AES-CTR with IV =
1. This produces a ciphertext c, which is next parti-
tioned as c = (c1kc2) where c1 represents the first 101
bytes of c. The Sender parses each PKi to obtain the
public encryption key pkE,i and for i = 1 to D, cal-
culates Ci = RSA-OAEP(pkE,i,Kkc1) and a signature
si = ECDSASign(skS,Cikc2). For each distinct push to-
ken received from IDS, the Sender transmits (Ci,c2,si)
to the APNs server. This process is illustrated in Fig-
ure 1.

For each ciphertext, the APNs service delivers the tu-
ple (IDsender, IDrecipient ,Ci,c2,si) to the intended desti-
nation. The receiving device contacts IDS to obtain the
Sender’s public key PK, parses for the signature veri-
fication key vkS, then verifies the signature s . If veri-
fication succeeds, it decrypts Ci to obtain Kkc1, recon-
structs c = (c1kc2) and decrypts the resulting AES-CTR
ciphertext using K. It decompresses the resulting gzip
ciphertext, parses the resulting plist to obtain the list
of Recipient IDs, and verifies that each of IDsender and
IDrecipient are present in this list. If any of the preced-
ing checks fail, or if the Recipient is unable to parse or
decompress the resulting message, the receiving device
silently aborts processing.

3This list includes one entry for each device registered to each
Sender and Recipient ID. The Messages client encrypts the message
with each Sender public key to ensure that message transcripts can be
read across all of the Sender’s devices.
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          AES encrypted payload

AES key

RSA ciphertext

               compressed payload

iMessage binary plist

huffman table

partial AES ciphertext signature

gzip compress

AES-CTR encrypt (IV=1)

extract bytes 101:nextract bytes 0:100

concatenation
RSA-OAEP encryption

CRC

Recipient PK Sender SK

ECDSA-SHA1 sign

sender ID

Figure 1: The iMessage encryption mechanism. From the top, each iMessage is encoded in a binary plist key/value
structure. The structure encodes a list of Sender and Recipient account identifiers, as well as the message contents.
This payload is subsequently gzip compressed, and encrypted under a freshly-generated 128-bit message key using
AES in CTR-mode. The AES key and the first 101 bytes of the AES ciphertext are concatenated and are encrypted
to each Recipient’s public key using RSA-OAEP. The remaining bytes of the AES ciphertext are concatenated to the
RSA ciphertext and the result is signed using ECDSA under the Sender’s registered signing key.

Attachments and long messages For long messages
and messages containing file attachments (e.g., images
or video), iMessage delivers the encrypted data using a
separate mechanism. First, the client generates a 256-
bit AES key K0 and encrypts the attached data using
AES in CTR mode. It next uploads the resulting en-
crypted document to Apple’s iCloud service and obtains
a unique icloud.com URL and an access token for the
attachment. In the course of this process, the iCloud
service may redirect the client to upload the encrypted
file to a third-party storage server operated by an outside
provider such as Amazon, Microsoft or Google. Hav-
ing uploaded the attachment, the client now constructs
a standard iMessage plist containing the URL and ac-
cess token, the key K0 and a SHA1 hash of the encrypted
document. This plist, which may also include normal
message text, is encrypted and transmitted to the Recip-
ient using the standard message encryption mechanism.
Upon receiving and decrypting the message, the Recip-
ient downloads the attachment using the provided URL
and access token, verifies that the provided hash matches
the received attachment, and decrypts the attachment us-
ing K0.

3 Security goals & Threat model

Apple has stated that iMessage is an end-to-end encryp-
tion protocol that should be secure against all attackers
that do not have control of Apple’s network. We base
our threat model on a recent survey on secure messag-
ing by Unger et al. [38]. This threat model includes the
following attackers:

Local Adversary. This includes an attacker with con-
trol over local networks, either on the Sender or Re-
cipient side of the connection.

Global Adversary. An attacker controlling large seg-
ments of the Internet, such as powerful nation states

or large Internet service providers.

Network operator. Apple operates centralized infras-
tructure for both public key distribution and mes-
sage transmission/storage. Potential adversaries in-
clude Apple, a government, or a malicious party
with access to Apple’s servers.

Each of these attackers may be active or passive. A
passive attacker simply observes traffic and does not seek
to alter or inject its own messages. An active attacker
may issue arbitrary messages to any party. In many
cases, these adversary classes may interact. As in [38] we
assume that adversaries also have access to the messag-
ing system, and can use the system to register accounts
and transmit messages as normal participants. We also
assume that the endpoints in the conversation are secure,
although in some cases we allow for the possibility that
an attacker might briefly take physical control of a device
and/or convince a user to modify device configurations.

4 High-level Protocol Analysis

An initial analysis of the iMessage specification shows
that the protocol suffers from a number of defects. In this
section we briefly detail several of these limitations. In
the following sections we focus on specific, exploitable
flaws in the encryption mechanism.

Key server and registration iMessage key manage-
ment uses a centralized directory server (IDS) which is
operated by Apple. This server represents a single point
of compromise for the iMessage system. Apple, and any
attacker capable of compromising the server, can use this
server to perform a man-in-the-middle attack and obtain
complete decryption of iMessages. The current gener-
ation of iMessage clients do not provide any means for
users to compare or verify the authenticity of keys re-
ceived from the server.
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Original message from Bob

Attacker replays Bob’s message

Figure 2: Example of a simple ciphertext replay.

Of more concern, Apple’s “new device registration”
mechanism does not include a robust mechanism for no-
tifying users when new devices are registered on their
account. This mechanism is triggered by an Apple push
message, which in turn triggers a query to an Apple-
operated server. Our analysis shows that these protec-
tions are fragile; in Appendix A we implement attacks
against both the key server and the new device registra-
tion process.

Lack of forward secrecy iMessage does not provide
any forward secrecy mechanism for transmitted mes-
sages. This is due to the fact that iMessage encryption
keys are long-lived, and are not replaced automatically
through any form of automated process. This exposes
users to the risk that a stolen device may be used to de-
crypt captured past traffic.

Moreover, the use of long term keys for encryption can
increase the impact of other vulnerabilities in the sys-
tem. For example, in §5, we demonstrate an active attack
on iMessage encryption that exposes current iMessage
users to decryption of past traffic. The risk of such at-
tacks would be greatly mitigated if iMessage clients pe-
riodically generated fresh encryption keys. See §7 for
proposed mitigations.

Replay and reflection attacks The iMessage encryp-
tion protocol does not incorporate any mechanism to pre-
vent replay or reflection of captured ciphertexts, leading
to the possibility that an attacker can falsify conversation
transcripts as illustrated in Figure 2. A more serious con-
cern is the possibility that an attacker, upon physically
capturing a device, may replay previously captured traf-
fic to the device and thus obtain the plaintext.

Lack of certificate pinning on older iOS versions
iMessage clients interact with many Apple servers. As of
December 2015, Apple has activated certificate pinning
on both APNs and ESS/IDS connections in iOS 9 and OS
X 10.11. This eliminates a serious attack noted by Ray-
nal et al. [34] in which an MITM attacker who controls
the Sender’s local network connection and possesses an

Apple certificate can intercept calls to the ESS/IDS key
server and substitute chosen encryption keys for any Re-
cipient (see Appendix A for further details). We note that
devices running iOS 8 (and earlier) or versions of OS X
released prior to December 2015 may still be vulnerable
to such attacks. For example, at the time of our initial
disclosure in November 2015 to Apple, pinning was not
present in OS X 10.11.

Non-standard encryption iMessage encryption does
not conform to best cryptographic practices and gener-
ally seems ad hoc. The protocol (see Figure 1) insecurely
composes a collection of secure primitives, including
RSA, AES and ECDSA. Most critically, iMessage does
not use a proper authenticated symmetric encryption al-
gorithm and instead relies on a digital signature to pre-
vent tampering. Unfortunately it is well known that in the
multi-user setting this approach may not be sound [21].
In the following sections, we show that an on-path at-
tacker can replace the signature on a given message with
that of another party. This vulnerability gives rise to a
practical chosen ciphertext attack that recovers the full
contents of some messages.

5 Attacks on the Encryption Mechanism

In this section we describe a practical attack on the iMes-
sage encryption mechanism (Figure 1) that allows an at-
tacker to completely decrypt certain messages.

5.1 Attack setting
Our attack assumes that an adversary can recover en-
crypted iMessage payloads, and subsequently access the
iMessage infrastructure in the manner of a normal user.
The first requirement implies one of two conditions: in
condition (1) the attacker is on-path and capable of inter-
cepting encrypted iMessage payloads sent from a client
to Apple’s Push Notification Service (APNs) servers.
Since the APNs protocol employs TLS to secure connec-
tions between the client and APNs server, this attacker
must possess some means to bypass the TLS encryption
layer; we discuss TLS interception in more detail in Ap-
pendix B. In condition (2) the attacker can recover iMes-
sage ciphertexts from within Apple’s network. This re-
quires either a compromise of Apple’s infrastructure, a
rogue employee, or legal compulsion. Figure 3 describes
the network flow of a single iMessage, along with poten-
tial attacker locations.

5.2 Attack overview
There are two stages of the attack. The first exploits
a weakness in the design of the iMessage encryption
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Figure 3: The process of sending an iMessage through
the APNS network. The steps are as follows: (1) The
Sender contacts ESS/IDS to obtain the public keys for
each Recipient; (2) (optional) the Sender contacts iCloud
to upload an attachment; (3) (optional) the Sender up-
loads the encrypted attachment to an outside storage
provider as directed by iCloud; (4) the Sender’s apsd in-
stance transmits the encrypted iMessage payload to Ap-
ple’s APNs server; (5) Apple delivers the payload to a
Recipient; (6) the Recipient contacts ESS/IDS to obtain
the Sender’s public key; (7) (optional) the Recipient con-
tacts iCloud if an attachment is present; (8) (optional)
the Recipient downloads the encrypted attachment from
an outside storage provider. Potential attacker locations
are labeled A, B and C.

composition: namely, that iMessage does not properly
authenticate the symmetrically encrypted portion of the
message payload. In a properly-designed composition,
this section of the ciphertext would be authenticated us-
ing a MAC in generic composition [14] or via an AEAD
mode of operation. Apple, instead, relies on an ECDSA
signature to guarantee the authenticity of this ciphertext.
In practice, a signature is insufficient to prevent an at-
tacker from mauling the ciphertext since an on-path at-
tacker can simply replace the existing signature with an
new signature using a signing key from an account con-
trolled by the attacker. In practice, the actual attack is
slightly more complex; the first phase includes additional
operations to defeat a countermeasure in the decryption
mechanism, which we discuss below.

The second stage of the attack leverages the ability to
modify the AES ciphertext (specifically, the section not
contained within the RSA ciphertext). This phase con-
sists of an adaptive chosen ciphertext attack exploiting
the structure of the underlying plaintexts. The attack re-
peatedly modifies the ciphertext and sends it to either the
Sender or a Recipient for decryption. If the attacker can
determine if decryption and parsing were successful on
the target device, she can gradually recover the underly-
ing iMessage payload.

The attack specifics are reminiscent of Vaudenay’s
padding oracle attack [40], but relies on the usage of
compression within the iMessage protocol. Specifically,

our attack takes advantage of the 32-bit CRC checksum,
computed over the pre-compressed message, incorpo-
rated into gzip compressed ciphertexts. Since CRCs are
linear under XOR we can verify guesses about message
content by editing the compressed, encrypted message
and testing if the corresponding correction to the CRC
results in a valid message.

5.3 A format oracle attack for gzip com-
pression

The gzip format [23] is a variant of DEFLATE com-
pression that combines LZ77 [41] and Huffman coding
to efficiently compress common data types. The format
supports both static and dynamically-generated Huff-
man tables, though most encoders use dynamic tables
for all but the shortest messages. To compress a mes-
sage, a CRC32 C is calculated over the uncompressed
input. Next, the encoder identifies repeated strings and
replaces each repeated instance with a tuple of the form
hlength,backwards distancei, where distance indicates
the relative position of the previous instance of the string.
The input is encoded using an alphabet of 286 symbols,
comprising the 256 byte literals, an end-of-block (EOB)
symbol, and 29 string replacement length values.4 If dy-
namic generation is selected, a Huffman table T is calcu-
lated using the resulting text as a basis (for static tables,
T = e), and the text is Huffman coded into a string of
variable-length symbols S = (s1, . . . ,sN) where string re-
placement symbols are internally partitioned into a pair
hlength,distancei. The resulting compressed message
consists of (T,S,C). On decompression the process is
reversed and the CRC of the resulting string is compared
to C. If any step fails, the decompressor outputs ?.

Attack intuition. Our attack assumes that the attacker has
intercepted a gzip compressed message encrypted using
an unauthenticated stream cipher and that we have access
to a decryption oracle that returns 1 if and only if the
message decrypts and successfully decompresses. Our
goal is to recover a substantial fraction of the plaintext
message.

For clarity, we assume the attacker knows the Huff-
man table T and the length in bits L of the uncompressed
input. We further assume the attacker knows the exact
location in the ciphertext corresponding to some (un-
known) `-bit Huffman symbol s that she wishes to re-
cover, as well as the position of the corresponding de-
coded literal in the uncompressed text. These are simpli-
fying assumptions and we will remove them as we pro-
ceed.

Given a ciphertext c, our attack works by first select-
ing a mask M 2 {0,1}`,M 6= 0` and perturbing the ci-

4A separate Huffman table is used to encode backwards distances.
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phertext such that the underlying symbol s will decrypt
to s0 = s�M. This is done by xoring M into the cipher-
text at the appropriate location. Let decode(T,s) and
decode(T,s0) represent the Huffman decoding of s and
s0 respectively, and let repeats be a boolean variable that
is true if and only if s (resp. s0) is repeated subsequently
via a DEFLATE string replacement reference. The po-
tential values of these three variables can be categorized
into the following seven cases:

Case decode(T,s) decode(T,s�M) repeats
1 [0,255] [0,255] False
2 [0,255] [0,255] True
3 [0,255] [256,285] (either)
4 [0,255] ? (either)
5 [256,285] [0,255] (either)
6 [256,285] [256,285] (either)
7 [256,285] ? (either)

In the following paragraphs, we consider the outcome of
our experiment for each of the cases above.

CASE 1: In this case, when the attacker submits the
mauled ciphertext to the decryption oracle, the oracle
will internally decode a result that differs from the origi-
nal input string in exactly one byte position: the position
corresponding to symbol s0. However, with overwhelm-
ing probability, the CRC C0 of the decompressed string
will not match C and cause the oracle to output 0.

Because CRC is linear under XOR, the attacker may
correct the encrypted value C by further mauling the ci-
phertext. Let d indicate the bit position of the sym-
bol associated with s (resp. s0) in the decoded mes-
sage. For each i 2 {0,1}8 the attacker xors the string
C̄ = CRC(0d ||i||0L�d)�CRC(0L) with the ciphertext at
the known location of C and submits each of the re-
sulting ciphertexts for decryption. Since we have that
decode(T,s0) 2 [0,255], one of these tests will always
result in a successful CRC comparison.

Upon receiving a successful result from the decryp-
tion oracle, the attacker now examines the Huffman ta-
ble T to identify candidate symbols s for which relation
decode(T,s�M)= decode(T,s)� i holds. If the attacker
cannot identify a unique solution for s, she may select a
new M0 6= M 6= 0` and repeat the procedure described
above until she has uniquely identified s. The attacker
can now increment her position in the ciphertext by `
bits and repeat this process to obtain the next plaintext
symbol.

If this experiment is unsuccessful, it indicates that the
ciphertext is not in Case 1 afrom the above table. To
determine which case applies, the attacker must conduct
additional experiments as described below. Sometimes
recovery of the symbol s will not be feasible at all; when
this occurs, the attacker must simply continue to the next
symbol in S. Occasionally, the adversary may still be
able to recover s at some additional cost.

CASES 3-4: In these cases, the original decoding of s
was a byte literal, but the decoding of s0 is either an in-
valid symbol or a special symbol (EOB or string replace-
ment symbol). The former case always results in decom-
pressor failure, while the latter will typically cause the
decoded string to differ from the original input at multi-
ple locations, resulting (with high probability) in a CRC
comparison failure that will not be corrected by the pro-
cedure described above.

To address these cases, the attacker may select a new
mask M0 6= M 6= 0` and repeat the complete experiment
described above. Depending on the structure of the Huff-
man table T , and provided that s2 [0,255], the new result
s�M0 may produce an outcome that satisfies the condi-
tions of cases (1) or (2).5

CASE 2: In this case, the symbol represented by s (resp
s0) is referenced by one or more subsequent instances of
DEFLATE string repetition. The practical impact is that
modifying s will produce an identical alteration at two
or more positions in the decoded string, and with high
probability none of the experiments indicated for Case 1
will succeed.

In some circumstances, it may be cost effective for the
attacker to skip s and simply move on to the next sym-
bol in S. Alternatively, the attacker can experimentally
modify the CRC to indicate the same alteration at all po-
sitions that could be affected by modifying s. Since the
attacker does not know the locations at which s is re-
peated or the number of such locations, this requires the
attacker to submit many candidate ciphertexts to the or-
acle, one for each possible set of locations where s may
repeat. In the event that s (resp s0) is repeated only once,
this requires the attacker to issue 28 · (L� d)/8 queries
to the oracle (one for each value of i and for each pos-
sible location for the repeated value of s0). This may be
feasible for reasonably short strings.

CASES 5-7: These cases occur when the original sym-
bol represented by decode(T,s) is a string replacement or
EOB symbol. In most instances, replacing s with (s�M)
produces a decoded string that differs from the original
in many positions, making it challenging for the attacker
to repair the CRC. If s decodes to a string replacement
token, and the replacement reference points to a location
that the attacker has already recovered, it may be possi-
ble for the attacker to detect the alteration using the tech-
nique described under Case 2. Otherwise the attacker
must skip s and move on to the next symbol in S.

Recovering the unknowns. The procedure described so
far requires the attacker to know the Huffman table T , the

5In principle, this approach might require as many as 28 · 2|M| =
28+` decryption queries to obtain a successful result, or rule out these
cases. In practice, however, the number of candidate mask values M0 is
likely to be much more limited.
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length of the uncompressed message L, the location and
length of the symbol s, and the byte index of the corre-
sponding decompressed literal. In practice many of these
quantities may be determined experimentally by iterat-
ing through candidate values for L,`,k and the symbol
position. This requires the attacker to issue many candi-
date decryption requests until one succeeds. In the case
of iMessage attachment messages, the length L is fixed
and an attacker can generate a representative corpus of
messages offline and easily estimate the other parame-
ters without oracle queries.

Recovering the Huffman table is more challenging. If
the message is encoded using a static table, then the ta-
ble is known to the attacker. However, if T is dynam-
ically generated, then the attacker learns only the re-
lation decode(T,s�M) = decode(T,s)� i, but has no
clear way of learning s or decode(T,s). Nonetheless,
it might still be possible to recover enough information
from these relations to recover the value of the underly-
ing literals.

However, in iMessage this proves unnecessary as we
take advantage of iMessage’s structure to recover a large
fraction of the dynamic table T . iMessage payloads con-
taining attachments embed a URL within the encrypted
message. Requests to which can be monitored (described
below). In this way, we learn the file path and/or host-
name indicated by the plaintext URL within each cipher-
text. Given this information, and by mauling individual
symbols s contained within the URL string, the attacker
can recover the value decode(T,s�M) for many differ-
ent values of M. This allows the attacker to identify a
relative-distance map of a portion of the Huffman tree.
This proves sufficient to recover much of the Huffman
table T .

Detecting successful decryption. Our attack assumes that
the attacker can detect successful decryption of a modi-
fied ciphertext. To simplify this assumption, we focused
on messages containing attachments, such as images and
videos. These messages include a URL for downloading
the attachment payload, as well as a 256-bit AES key to
be used in decrypting the attachment. When an iMessage
client correctly decrypts such a message, it automatically
initiates an HTTPS POST request to the provided URL.
A local network attacker can view (and intercept) this
request to determine whether decryption has occurred.
Moreover, if the attacker blocks the connection, the de-
vice will retry several times and then silently abort. Since
the client provides no indication to the user that a mes-
sage has been received, this admits silent decryption of
ciphertexts.

This technique can be also extended to situations
where the attacker is not on the target device’s local net-
work. By mauling the URL field to change the requested
hostname (e.g., from icloud.com to a domain that the

attacker controls), the attacker can simply direct the tar-
get device to issues HTTPS to a machine that the at-
tacker controls. This allows the attacker to conduct the
attack remotely by transmitting ciphertexts through Ap-
ple’s APNs network, at which point she obtains the full
HTTPS POST request from the target device. Since the
attacker controls the request domain, there is no need to
MITM the TLS connection.6

5.4 An Attack on Attachment Messages
Having provided an overview of the attack components,
we will describe each individual step of the complete at-
tack. This attack scenario assumes that a target Sender
has transmitted an attachment-bearing message to one or
more online receivers, and the attacker has the ability to
monitor the local network connection (and intercept TLS
connections) on one of the Sender or Recipient devices.

Step 1. Removing and replacing the iMessage signature.

Each iMessage is authenticated using an ECDSA sig-
nature, formulated using the private key of the iMessage
Sender. This signature prevents the attacker from directly
tampering with the message. However, a limitation of us-
ing signatures for authenticity is that they do not prevent
ciphertext mauling when an attacker controls another ac-
count in the system. An attacker who intercepts a signed
iMessage may simply remove the existing signature from
the message and re-sign the message using a different
key, corresponding to a separate account that the attacker
controls.7 The attacker now transmits the resulting en-
crypted payload, signed and delivered as though from a
different Sender address. The signature replacement pro-
cess is illustrated in Figure 4.

In practice, simply replacing the signature on a mes-
sage proves insufficient. In iMessage, a full list of Sender
and Recipient addresses is specified both in the unen-
crypted metadata for the message, and in the encrypted
message payload. Upon decrypting each message, iMes-
sage clients verify that the message was received from
one of the accounts listed in the Sender/Recipient list,
and silently abort processing if this condition does not
hold.8. While it is trivial to replace the unencrypted
Sender field, replacing encrypted envelope information
is more challenging. Fortunately, in most cases this field
of the iMessage plist is contained within the malleable

6The current versions of Apple’s Messages client do not enforce
that this URL contains icloud.com, and will connect to any hostname
provided in the URL. Similarly, the Messages client does not pin cer-
tificates for the HTTPS connection.

7On Mac OS X, iMessage signing keys are readily accessible from
the Apple Keychain.

8Based on our experiments, the participant list does not appear to
be ordered, or to distinguish between Sender and Recipients. It is suf-
ficient that the Sender identity appears somewhere in this list.
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AES-CTR ciphertext, and we are able to alter the con-
tents of the Sender/Recipient list so that it contains the
identity of the replacement Sender account.

Step 2. Altering the Sender identity.

To alter the Sender identity, the attacker must selec-
tively maul the AES-CTR ciphertext to change specific
bytes of the Sender/Recipient plist field to incorpo-
rate the new Sender identity she is using to transmit the
mauled ciphertext. This is challenging for several rea-
sons.

First, the initial 101 bytes of the AES ciphertext
are stored within the RSA-OAEP ciphertext, which is
strongly non-malleable. Thus we are restricted to alter-
ing the subsequent bytes of the ciphertext. Fortunately,
the binary plist key-value data structure is top heavy,
in that it stores a list of all key values in the data struc-
ture prior to listing the values associated with each key.
In practice, this ensures that the relevant Sender iden-
tity appears some distance into the data structure. More-
over, the application of gzip compression produces ad-
ditional header information, including (in many cases)
a dynamic Huffman table. In all of the cases we ob-
served, the symbols encoding the Sender identity are lo-
cated subsequent to the first 101 bytes, and are therefore
not included within the OAEP ciphertext.

The use of gzip compression somewhat compli-
cates the attack. Rather than mauling uncompressed
ASCII bytes, the attacker must alter a set of compressed
Huffman symbols which have been encoded using a
(dynamically-generated) table T that the attacker does
not know. Fortunately, the attacker knows the original
identity of the Sender, as this value is transmitted in the
unencrypted apsd metadata. Moreover, in all iMessage
clients that we examined, the Sender identity is transmit-
ted as the first string in the Sender/Recipient list, which –
due to iMessage’s predictable format – appears in a rela-
tively restricted range of positions within the ciphertext.
Even with this knowledge, altering the Sender ID in-
volves a large component of guessing. The attacker first
estimates the location of the start of the Sender/Recipient
list, then selectively mauls the appropriate portions of the
AES ciphertext, while simultaneously updating the CRC
to contain a guess for the modified (decoded) symbol.
This is a time consuming process, since the attacker must
simultaneously identify (1) the appropriate location in
the ciphertext for the symbol she wishes to modify, (2)
a modification that causes the symbol to change to the
required symbol. The target device will silently ignores
any incorrect guesses, and will proceed with attachment
download only when the mauled Sender ID in the plist
is equal to the Sender ID from which the the attacker is
transmitting.

To simplify the attack, the attacker may restrict her at-

RSA ciphertext partial AES ciphertext sig A

RSA ciphertext modified partial AES ciphertext sig B

Change sender ID (A->B) Modify payload, adjust CRC Sign with skB

Figure 4: Modifying the partial AES ciphertext, includ-
ing the Sender ID and CRC, and replacing the signature
with a new signature corresponding to an account (and
signing key) we control.

tention to addresses that differ from the original Sender
ID in at most one symbol position. This is accomplished
by registering new iCloud addresses that are “one off”
from the target Sender identity. To increase the likeli-
hood that we will succeed in altering the Sender account
to match one that we have selected, we register multiple
new Sender identities that are near matches to the origi-
nal identity. For each attempt at mauling the ciphertext,
we must also “repair” the CRC by guessing the effect of
our changes on the decompressed message.

In our experiments, we found that an email address of
the form abcdef@icloud.com could be efficiently mod-
ified to a new account of the form abcdef@i8loud.com
in approximately 217 decryption queries to a target de-
vice.9 Since Huffman tables vary between messages, we
cannot mutate every message to the same domain, and
thus we need to control several variants of icloud.com
for this strategy to be successful in all cases. Fortunately,
the edits are predictable and our simulations indicate that
we require only one domain to recover most messages.

A side effect of this modification is that, due to string
replacement in gzip, the attachment URL is simultane-
ously altered to point to i8loud.com, which means that
attachment HTTPS POST requests are sent to a computer
under our control. This makes it possible to conduct the
attack remotely.

Step 3. Recovering the Huffman table. Given the abil-
ity to intercept the attachment request POST URL to
icloud.com, we now recover information about the dy-
namic Huffman tree T used in the message. The attach-
ment path consists of a string of alphanumeric digits,
which in most instances are encoded as Huffman sym-
bols of length ` 2 [4,8].

By intercepting the HTTPS connection to
icloud.com, the attacker can view the decoded
the URL path and systematically maul each Huffman
symbol in turn, repairing the CRC using the technique
described in the previous subsection. This allows the
attacker to gradually recover a portion of the Huffman
tree (Figure 5). In practice, the attacker is able to
recover only a subset of the tree, however, because
the iMessage client will silently fail on any URL that

9These email addresses are examples, and not the real email ad-
dresses we used in our experiments.
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Figure 5: Fragment of a Huffman tree from an attach-
ment iMessage.

contains characters outside the allowed URL character
set.10 Fortunately this set includes most printable
alphanumeric characters.

Our implementation recovers a portion of the Huffman
tree that is sufficient to identify the characters in the set
0�9, A�F . Our experiments indicate that this phase of
the process requires an average 217 decryption requests
and a maximum of 219

Step 4. Recovering the attachment encryption key. When
an iMessage contains an attachment, the message em-
beds a 256-bit AES key that can be used to decrypt the
attachment contents. This key is encoded as 64 ASCII
hexadecimal characters and is contained within a field
named decryption-key. An attacker with oracle ac-
cess to a target device, and information on the Huffman
table T , can now systematically recover bytes from this
key. Upon recovering the key, they can use the inter-
cepted HTTPS request information to download the en-
crypted attachment and decrypt it using the recovered
key.

The approach used in recovering the attachment key
is an extension of the general format oracle attack de-
scribed above. The attacker first searches the cipher-
text to identify the first position of the decryption key
field. The attacker identifies a mask M (typically a sin-
gle or double-bit change to the ciphertext) that produces
a change in the decoded message at the first position
of the encryption key, which is known due to the pre-
dictable structure of attachment messages. To identify
this change, the attacker “fixes” the CRC to test for
each possible result from the decryption key, then learns
whether the decryption/decompression process succeeds.
To obtain the full key, the attacker repeats this process for
each of the 64 hexadecimal symbols of the encryption
key.

This process does not reliably produce every bit of the
key, due to some complications described in the gen-
eral attack description above. Principal among these is
the fact that some Huffman symbols represent string re-
placement tokens rather than byte literals. While it seems

10iMessage does not perform URL coding on disallowed characters.

counterintuitive to expect repeated strings within a ran-
dom key, this occurrence is surprisingly common due to
the fact gzip will substitute even short (3 digit) strings.
Indeed, on average we encounter 1.9 three-digit repeti-
tions within each key. In this case, we attempt to iden-
tify subsequent appearances of the symbol by guessing
later replacement locations. If this approach fails, our
approach is to simply ignore the symbol and experimen-
tally move forward until we reach the next symbol.

While it is possible to recover a larger fraction of
the symbols in the message by issuing more decryption
queries (see §6 for a discussion of the tradeoffs), in many
cases it is sufficient to simply to guess the missing bits of
the key offline after recovering an encrypted attachment.
In practice, the entropy of the missing sections is usually
much lower than would be indicated by the number of
missing bits, since in most cases the replacement string
is drawn from either the URL field or earlier sections of
the key, both of which are known to the attacker.
Step 5. Recovering the message contents. Each attach-
ment message may also contain message text. This text
can be read in a manner similar to the way the key is
recovered in the previous step, by mauling the message
portion of the text and editing the CRC appropriately.
This approach takes slightly more effort than the hex-
adecimal key recovery step, due to the higher number of
potential values for each Huffman symbol in the message
text.

6 Implementation and Evaluation

6.1 Estimating attack duration
To validate the feasibility of the attack described in §5.4,
we implemented a prototype of the gzip format oracle
attack in Python and executed it against the Messages
client on OS X 10.10.3. Our attack successfully recov-
ered 232 out of 256 key bits after 218 decryption queries
to the target device. The main challenge in running the
attack was to determine the correct timeout period after
which we can be confident that a message has not been
successfully decrypted. This timeout period has a sub-
stantial impact on the duration of the attack, as we de-
scribe below.

Experimental Setup To deliver iMessage payloads to
the device, we customized an open-source Python project
called pushproxy (hereinafter called the proxy) and
used it to intercept connections from the device to Ap-
ple’s APNs server [3]. This approach models an at-
tacker who can either impersonate or control Apple’s
APNs servers. While our attack assumed local network
interception and did not send messages through Apple’s
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servers, we note that if an attacker is able to capture mes-
sages in transit (by bypassing TLS) or by compromising
Apple’s servers, the remainder of the attack can in prin-
ciple be conducted remotely (see the end of §5.3 for de-
tails). For ethical and legal reasons, we explicitly chose
not to test attacks that relayed messages via Apple’s pro-
duction servers. Thus all of our attacks were conducted
via a local network.

To address the use of TLS on apsd connections, we
configured our modified proxy with a forged Apple cer-
tificate based on a CA root certificate we created, and
change /etc/hosts to redirect APNs connections in-
tended for Apple towards our local proxy. We generate
the forged certificate by installing our root CA on the tar-
get system.11

To monitor and intercept attachment download re-
quests, we configured an instance of a TLS MITM proxy
(mitmproxy) using our self-signed root certificate to in-
tercept all outbound requests from the device made via
HTTP/HTTPS. When the target device receives an at-
tachment message, it makes two HTTPS POST requests
to {0, . . . ,255}-content.icloud.com. Based on the
result of these requests, the device issues a second HTTP
GET request to download the actual attachment. In our
experiments we block both of the POST requests, ensur-
ing that no indication of the message processing is dis-
played by the Messages client. For each oracle query, the
attack code waits for mitmproxy to report an attachment
POST request as defined above or, after a set time out,
assumes the oracle query resulted in a failed message.

Finally, we created an iMessage account for the at-
tacker that is a single-character edit of the sender’s ad-
dress (e.g. if the sender is alice@example.com, the at-
tacker might be clice@example.com). We only generate
one such account for the edit we expect to be successful,
although a real attacker might register a large corpus of
iMessage accounts and thus increase the success proba-
bility of this phase of the attack.

Verifying the existence of the oracle To ensure that
iMessage behavior is as expected, we conducted a series
of tests using hand-generated messages to determine if
we were able to detect decryption success or failure on
these messages. Our results were sufficient to confirm
the vulnerability of §5, and verify iMessage’s behavior
sufficiently well that we could construct a simulated ora-
cle for our experiments of §6.2.

Estimating the timeout for failed queries The main
goal of our experiment was to determine the maximum

11Since OS X 10.10.3 does not include certificate pinning for APNs
connections, this allowed us to intercept and inject iMessage cipher-
texts.

timeout period after which we can determine that the de-
vice has been unable to successfully decrypt and process
a message. To determine this, our attack queries the gzip
format oracle by sending a candidate message and wait-
ing until it either sees a resulting attachment download
(in which case the message decrypted) or some timeout
passes. Too long of a timeout results in unreasonable
runtimes and too short of a timeout produces false nega-
tives, which lead to incorrect key recovery.

Small scale experiments proved unable to reliably esti-
mate the maximum timeout: the observed wait time dis-
tribution seemingly has a long tail and may be dependent
on load not encountered in small experiments (e.g. due to
failed decryptions). Using the full attack code to find the
max timeout, on the other hand, is impractical, since we
must run 218 queries, each lasting as long as the timeout.
This would take between 18 hours and 3 days depending
on the timeout duration we wish to test.

In order to estimate the correct timeout, we ran our
attack on the device in tandem with a local instance of
the format oracle which, using the recipient’s private key,
also decrypts the message and emulates iMessage’s be-
havior. If the candidate message fails to decrypt against
the local oracle, we use a short (400ms) timeout period.
If the candidate message decrypts successfully on this
local oracle, then we wait an unbounded amount of time
for the oracle query, and record the necessary delay. We
stress that this local-oracle approach was used only to
speed up the process of finding the maximum delay; the
full attack can be conducted without knowledge of the
private key.

Results We ran our main experiment on a real mes-
sage intercepted using the proxy. It recovers 232 out of
256 key bits in 218 queries and took 35 hours to run. The
maximum observed delay between a query and the re-
sulting download request was 903ms, while the average
was 390ms with a standard deviation of 100ms. Based on
this data, and without considering further optimizations,
we estimate that the full attack would require approxi-
mately 73 hours to run if we naively used 1 second as the
timeout.

Optimizing runtime The obvious approach to opti-
mizing our attack is to reduce the timeout period to the
minimum period that iMessage requires to successfully
process and queue a message. Through experiment, we
determined this to be approximately 400ms. Thus one
avenue to optimizing the experiment is to reduce the
timeout period for all messages to 400ms, using the as-
sumption that a successful experiment may result in a
“late” download. Since we would not be able to neatly
determine the specific message query that occasioned the
download, we would need to temporarily increase the
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delay period and “backtrack” by repeating the most re-
cent e.g., 10 queries to determine which one caused the
download. We are in the process of implementing this
optimization and will present the results in the full ver-
sion of this work. Because successful queries are quite
sparse,12 this does not meaningfully affect the number of
queries needed for the attack. In our estimation, these
techniques will reduce the cost of the full attack down to
35 hours and requires only straightforward modifications
to our proof of concept code.

A second optimization is to run the attack against mul-
tiple devices with attack queries split and conducted in
parallel against them. For n devices, the attack time is
reduced by approximately a factor of n. As many users
may have 2 or 3 devices, this can offer substantial reduc-
tions.

Finally, we can reduce the raw number of queries
needed to mount the attack by refining the gzip-oracle
attack techniques. In particular, we can reduce the num-
ber of queries needed to recover the Huffman table by
inferring the structure of the tree from the partial infor-
mation we have, and from the observation that the Huff-
man trees fall within a fairly limited range of distribu-
tions. In particular we note that for the Huffman trees
used in gzip, recovering the symbol lengths alone is suf-
ficient to recover the tree. An approach drawing from
techniques in machine learning to recover the Huffman
table given only a few queries, the distribution of such ta-
bles, and known partial information could offer substan-
tial improvements. We leave a full exploration of these
optimizations to future work.

6.2 Simulation results
Although we have conducted our attack on iMessage, we
have not explored its effectiveness with a large range of
messages. Given the time it takes to run an experiment,
doing so is prohibitive. We opt instead to simulate our
results.

Simulation To evaluate the overall effectiveness of our
format oracle attack, we constructed a simulated mes-
sage generator and decryption oracle. Messages pro-
duced by our generator are distributed identically to
real attachment-bearing messages, but contain randomly-
generated strings in place of the filename, URL path,
Sender and Recipient addresses, decryption key, and
“signature” (hash) fields. The decryption oracle emulates
the iMessage client’s parsing of the inner binary plist.
For performance, it skips encryption and decryption.13

12Out of the 218, only 418 were successful.
13Our implementation prevents the attacker from modifying the first

101 bytes of the message, as those are normally contained within the
RSA ciphertext. Additionally, the oracle enforces that the alleged

Decompression is done using Python’s gzip module,
which is a wrapper around on zlib. We experimentally
validate the oracle’s correctness against the transcript of
a real attack and against separate messages.

Results We ran our simulated attack on a corpus of
10,000 generated messages and show the results in Fig-
ure 6. In all cases, our experiments completed in at
most 219 queries, with an average of approximately 217

queries. For 34% of the experiments we ran, our attack
was able to recover � 216 bits of the attachment AES
key. For 23% of the messages we experimented with,
we recovered � 224 bits of the key, enabling rapid brute-
force of the remaining bits on commodity hardware.14

Optimizing success rate Many of the failures we ex-
perience in key recovery are caused by issues with string
repetition. Recall that repeated substrings in a message
are compressed in gzip by replacing all subsequent rep-
etitions of the substrings with a backwards-pointing ref-
erence. As a result, editing the canonical location of a
substring in the compressed message may cause similar
changes to future instances of the same substring in the
decompressed message. Our CRC correction for a given
location fails to compensate for these later changes be-
cause we simply do not know where in the uncompressed
message the second instance of the substring appears. As
a result, our current attack simply skips these bits.

However, we can address this weakness with only a
modest increase in the number of oracle queries. By
scanning through the remaining bytes and applying the
same CRC correction at each subsequent location in the
uncompressed message, we can identify the location of
the subsequent instances of the substring. This is effi-
cient mainly for strings that are repeated twice, but our
experiments indicate this is the most common case. Note
that we do not need to scan through the entire mes-
sage. As a result of the particular format of the mes-
sages, there are only a few points where we can get dupli-
cates: most of the message is in lowercase letters or non-
printable characters, whereas the decryption-key and
mmcs-url field (i.e. the locations where repeats cause
the most serious issues) are upper case alpha-numeric
and hence will not contain repeats from the majority of
the other fields. For the experiments described above,
this would result in a 14% increase in the number of mes-
sages for which we can recover 224 bits.

Sender identity is included within the plist, which is a condition en-
forced by iMessage.

14Experiments on an inexpensive Intel Core i7 show that we can re-
cover 32 missing key bits in approximately 7 minutes using an AES-NI
implementation. Therefore recovering 40 missing key bits should take
approximately 28 hours on a single commodity desktop.
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(a) Number of queries vs number of recovered key bits. The
orange dashed line represents 216 bits recovered, the solid
green line 224.

(b) Distribution of attack length, measured in queries. The
high concentration of attacks near zero is due to a rapid
failure when it fails to edit the sender email.

Figure 6: Simulation results for the attachment recovery attack.

7 Mitigations

Our main recommendation is that Apple should replace
the entirety of iMessage with a messaging system that
has been properly designed and formally verified. How-
ever, we recognize this may not be immediately feasi-
ble given the large number of deployed iMessage clients.
Thus we divide our recommendations into short-term
“patches” that preserve compatibility with existing iMes-
sage clients and long-term recommendations that require
breaking changes to the iMessage protocol.

7.1 Immediate mitigations

Duplicate RSA ciphertext detection. The attacks we
described in §5 are possible because the unauthenticated
AES encryption used by iMessage is malleable and does
not provide security under adaptive chosen ciphertext at-
tack, unlike RSA-OAEP encryption [15]. Maintaining
a list of all previously-received RSA ciphertexts should
prevent these replay and CCA attacks without the need
for breaking changes in the protocol. Upon receiving a
stale RSA ciphertext, the Recipient would immediately
abort decryption. This fix does not prevent all possi-
ble replays, given that iMessage accounts may be shared
across multiple distinct devices. However, it would sub-
stantially reduce the impact of our attacks until a more
permanent fix can be implemented. Note: This modifica-
tion has been incorporated into iOS 9.3 and Mac OS X
10.11.4.

Force re-generation of all iMessage keys and destroy
message logs. iMessage uses long-term decryption keys,

and offers no mechanism to provide forward secrecy. If
possible, Apple should force all devices to re-generate
their iMessage key pairs and destroy previously-held se-
cret keys. In addition, Apple should destroy any archives
of encrypted iMessage traffic currently held by the com-
pany.

Pin APSD/ESS certificates or sign ESS responses. The
current iMessage protocol relies heavily on the security
of TLS, both for communications with the key server and
as an additional layer of protection for iMessage push
traffic. Apple should enhance this security by employing
certificate (or public key) pinning within the Messages
application and apsd to prevent compromise of these
connections. Alternatively, Apple could extend their pro-
prietary signing mechanisms to authenticate key server
responses as well as requests.

Reorganize message layout. The current layout of
encrypted messages includes approximately 101 bytes
of the CTR message within the RSA-OAEP cipher-
text, which is resilient to ciphertext malleability attacks.
Modifying sender-side code to re-organize the layout of
the underlying plist data structure to incorporate the
sender and receiver fields within this section of the mes-
sage would immediately block our attack. Implement-
ing this change requires two significant modifications:
(1) Apple would need to disable dynamic construction
of Huffman tables within the gzip compression, and (2)
restructure the binary plist serialization code to place the
sender address first. We stress that this is a fragile patch:
if any portion of the sender ID is left outside of the
RSA ciphertext, the ciphertext again becomes vulnera-
ble to mauling. Moreover, this fix will not protect group
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messages where the list of Recipients is longer than 100
bytes.

7.2 Long term recommendations

Replace the iMessage encryption mechanism. Apple
should deprecate the existing iMessage protocol and re-
place it with a well-studied construction incorporating
modern cryptographic primitives, forward secrecy and
message authentication (e.g., OTR [17] or the TextSe-
cure/Axolotl protocol [4]). At minimum, Apple should
use a modern authenticated cipher mode such as AES-
GCM for symmetric encryption. This change alone
would eliminate our active attack on iMessage encryp-
tion, though it would still not address any weaknesses in
the key distribution mechanism. In addition, iMessage
should place the protocol versioning information within
the public key block and the authenticated portions of the
ciphertext, in order to prevent downgrade attacks.

Implement key transparency. While many of the
protocol-level attacks described in this paper can be mit-
igated with protocol changes, iMessage’s dependence on
a centralized key server represents an architectural weak-
ness. Apple should take steps to harden iMessage against
compromise of the ESS/IDS service, either through the
use of key transparency [31], or by exposing key finger-
prints to the user for manual verification.

8 Related Work

There are a three lines of research related to our work:
secure message protocols, attacks on symmetric en-
cryption, and decryptions attacks using compression
schemes.

Instant messaging has received a great deal of atten-
tion from the research community. Borisov et al. intro-
duced OTR [17], and proposed strong properties for mes-
saging, such as per-message forward secrecy and denia-
bility. Frosh et al. analyze a descendant protocols such as
TextSecure [24]. More recent work has focused on multi-
party messaging [25] and improved key exchange denia-
bility [39]. In a related area, Chen et al. analyzed push
messaging integrations, including Apple push network-
ing [20]. For a survey of secure messaging technologies,
see [38].

A number of works have developed attacks on unau-
thenticated, or poorly authenticated encryption proto-
cols. In addition to the padding oracle of Vaudenay [40]
and later applications [13], padding oracle attacks have
been extended to use alternative side channels such as
timing [8, 19]. Some more recent works have pro-
posed attacks on more complex data formats such as
XML [27, 30].

Some work has addressed the combination of com-
pression and encryption. Some attacks use knowledge of
a relatively small number of bytes in the plaintext to learn
information about the compression algorithm and even-
tually recover an encryption key [16, 37]. Kelsey [28]
and others [29, 35] used compression in the (partially)
chosen plaintext setting to recover information about
plaintexts.

9 Conclusion

In this work we analyzed the security of a popular end-
to-end encrypted messaging protocol. Our results help
to shed light on the security of deployed messaging sys-
tems, and more generally, provide insight into the state
of the art in security mechanisms currently deployed by
industry. This insight raises questions about the way re-
search results are disseminated an applied in industry and
how our community should ensure that widely-used pro-
tocols employ best cryptographic practices.

This work leaves several open questions. First, the
gzip format oracle attack we describe against iMes-
sage may apply to other protocols as well. For example,
OpenPGP encryption (as implemented by GnuPG) [18]
also employs gzip and may be vulnerable to similar at-
tacks when it is used for online applications such as in-
stant messaging [2]. Moreover, our attack requires that
the adversary have some access to a portion of the de-
crypted information. We leave to future work the devel-
opment of a pure “blind” attack on gzip encryption, one
that does not require this additional information.
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[25] GOLDBERG, I., USTAOĞLU, B., VAN GUNDY, M. D., AND
CHEN, H. Multi-party off-the-record messaging. In CCS ’09
(New York, NY, USA, 2009), CCS ’09, ACM, pp. 358–368.

[26] GRIFFIN, A. WhatsApp and iMessage could be banned under
new surveillance plans. The Independent (January 2015).

[27] JAGER, T., AND SOMOROVSKY, J. How to break XML encryp-
tion. In ACM CCS ’2011 (October 2011), ACM Press.

[28] KELSEY, J. Compression and information leakage of plaintext.
In FSE ’02 (2002), vol. 2365 of LNCS, Springer, pp. 263–276.

[29] KOHNO, T. Attacking and repairing the winZip encryption
scheme. In ACM CCS ’2004 (2004), ACM Press, pp. 72–81.

[30] KUPSER, D., MAINKA, C., SCHWENK, J., AND SOMOROVSKY,
J. How to break XML encryption – automatically. In Proceed-
ings of the 9th USENIX Conference on Offensive Technologies
(Berkeley, CA, USA, 2015), WOOT’15, USENIX Association.

[31] MELARA, M. S., BLANKSTEIN, A., BONNEAU, J., FELTEN,
E. W., AND FREEDMAN, M. J. CONIKS: Bringing key trans-
parency to end users. In USENIX ’15 (Washington, D.C., Aug.
2015), USENIX Association, pp. 383–398.

[32] MESSIEH, N. Apple’s iMessage and Facetime blocked in the
UAE. TheNextWeb (November 2011).

[33] PALETTA, D. FBI Chief Punches Back on Encryption. Wall
Street Journal (July 2015).

[34] RAYNAL, F. iMessage privacy. Available at http://blog.
quarkslab.com/imessage-privacy.html, October 2013.

[35] RIZZO, J., AND DUONG, T. The CRIME Attack. Avail-
able at https://docs.google.com/presentation/d/
11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
edit#slide=id.g1d134dff_1_222, September 2012.

[36] SHIH, G., AND CARSTEN, P. Apple begins storing users’ per-
sonal data on servers in China. Reuters (August 2014).

[37] STAY, M. ZIP attacks with reduced known plaintext. In Fast Soft-
ware Encryption, 8th International Workshop, FSE 2001 Yoko-
hama, Japan, April 2-4, 2001, Revised Papers (2001), pp. 125–
134.

[38] UNGER, N., DECHAND, S., BONNEAU, J., FAHL, S., PERL,
H., GOLDBERG, I., AND SMITH, M. SoK: Secure messaging.
In IEEE S&P (Oakland) ’15 (2015).

[39] UNGER, N., AND GOLDBERG, I. Deniable key exchanges for se-
cure messaging. In Proceedings of the 22Nd ACM SIGSAC Con-
ference on Computer and Communications Security (New York,
NY, USA, 2015), CCS ’15, ACM, pp. 1211–1223.

[40] VAUDENAY, S. Security flaws induced by CBC padding - appli-
cations to SSL, IPSEC, WTLS. In EUROCRYPT ’02 (London,
UK, 2002), vol. 2332 of LNCS, Springer-Verlag, pp. 534–546.

[41] ZIV, J., AND LEMPEL, A. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory 23,
3 (1977), 337–343.

A Attacks on Key Registration

While this work focuses on the retrospective decryption
of iMessage payloads, in the course of our reverse engi-
neering we were able to implement attacks on Apple’s
key registration infrastructure. The first attack is an im-
plementation of attacks previously noted by Raynal et
al. [34]. In these attacks, which work only against ver-
sions of iOS prior to iOS 9 and Mac devices prior to
OS X 10.11.4 (i.e., devices without key pinning), an at-
tacker with a forged Apple TLS certificate can intercept
the connection to the Apple key server in order to sub-
stitute chosen public keys. Additionally, we find a novel
attack against the device registration process that allows
an attack with stolen credentials to circumvent existing
protection mechanisms.

The protocol for registering a device is shown in
Figure 8. The user first establishes a TLS connec-
tion to Apple’s IDS server and authenticates using their
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Client profile.ess.apple.com

AuthenticateUser(usr, pass)
ServerResponse(at, status=0, id)
AuthenticateDS(at, csrid , id)

ServerResponse(certid , id, status=0)
IDGetHandles(AH)

ServerResponse({urii, statusi}i2N , id, status=0)

Figure 7: Profile conversation. usr = username, pass =
password, at = authentication token pt = push token,
pkclient = client’s public key, st = session token. AH is an
authentication header with the following fields: certdevice
= signed by the Apple Fairplay Certificate, certid = a cer-
tificate associated with the client id, id, pt, noncedevice,
nonceid, sdevice, and sid .

Client identity.ess.apple.com

InitializeValidation(pt, session_info_request)
ServerResponse(ttl, session info, status=0)

Register(AH, device_data, PKclient , misc_pref, uri, id, s )
ServerResponse(id, uri, certreg, status=0)

GetDependantRegistrations(AH)
ServerResponse({PKi, sti, pti, device_datai, misc_prei }i2D)

Figure 8: Identity conversation. pt = push token, pkclient
= client’s public key, st = session token. AH is an au-
thentication header with the following fields: certdevice =
signed by the Apple Fairplay Certificate, certid = a cer-
tificate associated with the client id, id, pt, noncedevice,
nonceid, sdevice, and sid .

iCloud credentials. The client generates two separate
key pairs: a 1280-bit RSA public key pair (pkE ,skE)
for use in encrypting and decrypting messages, and an
ECDSA keypair (vkS,skS) for authenticating messages.
The client transmits the public portion of these keys
PK = (pkE ,vkE) to the IDS, which registers it to the
user’s iCloud account name. We diagram the full login
and registration protocols in Figures 7 and 8. To sup-
port multiple devices on a single account, the IDS will
store and return all public keys associated with a given
account.

A.1 Key Substitution Attack
The Apple key distribution systems are accessed each
time a legitimate user wants to send an iMessage to
a new Recipient. The Messages client first contacts
query.ess.apple.com to look up the keys for a given
username. In response, the server returns the user’s pub-
lic key(s), status, and push tokens for addressing APNs
communications to the user. A fragment of the request
and response is shown in Figure 9.

The query.ess.apple.com response message con-
tains public keys, along with push tokens, for each of the
devices registered to an account. Each of the key entries

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
  <key>identities</key>
  <array>
    <dict>
      <key>client-data</key>
      <dict>
        <key>public-message-identity-key</
key><data>MIH2gUMAQQQzklEBPP0Nu0FHBovCJe+Prn8Rd97qf/j/ER3p2fRSe/
2BaYJnbIfEfQcpooKa3fWayu4+J1DJsIMaIwl52T7agoGuAKwwgakCgaEAoScfeVODb
EMjRrCNMWDQ2E2hWOXn46Mdqx7mLxJMS3LpGQjBoc3PeN1k3yMUqhi0YUYJJIq7dvac
1IJEiQilQDrc18eZ754BBknNmq7wXuDs8rQ2qmiE8/vOnCP4pOwwDQBy/
bdX2J3u2365R2VK6GDuk0zIjCeeAavAXr8kt9SzcvrO9KkYH1JKyKqn6FIYmR8cfeHt
ctJ0Tax8tnlZGQIDAQAB</data>
        <key>public-message-identity-version</key><real>2</real>
      </dict>
      <key>push-token</key><data>CI/    
                                         =</data>
    </dict>
  </array>
  <key>status</key><integer>0</integer>
</dict>
</plist>

GET /WebObjects/QueryService.woa/wa/query?uri=mailto
%3AXXXXXX2027%40icloud.com&weight=light HTTP/1.1
Host: query.ess.apple.com

Figure 9: Excerpts from an ESS/IDS directory lookup
request (top) and response (bottom). The request ad-
dress and a portion of the response Push token have been
redacted.

0x30 0x81 0xF6 0x81 0x43 0x00 0x41 0x04 488 Bits (ECDSA Key Material) 0x82 0x81 0xAE 0x00 0xAC 

Public Exponent 1280 Bit RSA Key 0x30 0x81 0xA9 0x02 0x81 0xA1 0x00 0x02 0x03 0x01 0x00 0x01

Figure 10: Format of public key payload in ESS server
response

is a 332 character long base64 encoded binary payload.
When decoded, they takes the form shown in Figure 10.

Upon receiving the RSA public key in the above di-
agram, the Messages client uses this key to encrypt the
outgoing iMessage payload. The ECDSA key is not used
when sending a message, but is used to verify the in-
tegrity of a message when it is received from that user.
iMessage clients appear to accept the most recent key
delivered by ESS/IDS even if it disagrees with previous
entries cached by the device.

Notably, the only security measures embedded in this
conversation are authentication fields in the header of the
request; the server does not sign the response. Thus the
authenticity of the response depends entirely on the secu-
rity of the TLS connection. This seems like an oversight,
given that many other fields in the Apple protocols are
explicitly authenticated. Worse, in iOS 8 and versions of
OS X 10.11 released prior to December 2015, the Mes-
sages client does not use certificate pinning to ensure that
the connection terminated by an Apple server. Thus an
attacker with a stolen TLS root certificate can intercept
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key requests and substitute their own key as a response.
This degrades the security of iMessage to that of TLS.

We implemented this attack by installing a self-signed
X.509 root certificate into the local root certificate store
of a Mac device. This allowed us to verify that there were
no warning mechanisms that might alert a user to the key
substitution. By further intercepting messages transmit-
ted via the APNs network, we were able to respond to
all key lookup requests with our own attacker key, and
subsequently decrypt any iMessages transmitted via the
device.

Our experiments demonstrate that iOS 9 is no longer
subject to simple key substitution attacks, due to the ad-
dition of certificate pinning on TLS connections. This
increases the relative impact of our novel decryption at-
tacks. Surprisingly, our experiments demonstrated that
OS X 10.11.1 remained vulnerable as of November 2015.
We notified Apple of this oversight, and they have added
key pinning as of OS X 10.11.13.

A.2 Credential theft

The first message in the registration process, shown
in Figure 7, passes the user’s credentials to the
profile.ess.apple.com server to be verified. As
noted in previous sections, OS X 10.10.5 and iOS 8 de-
vices do not employ certificate pinning on this server, and
the credentials are sent in plaintext within the TLS con-
nection.15 By conducting a TLS MITM attack on this
connection, we are able to intercept iCloud login creden-
tials. Using this information we can register new iMes-
sage devices to an account, ensuring that we will be able
to receive future messages.

Apple’s primary defense against registration of new
devices is a notification message that is sent to all
previously-registered devices. In order to register a new
device to a target account without alerting the victim, we
also developed a method to overcome these notification
mechanisms. We observed two such mechanisms:

1. Upon registration of a new device, all devices
logged into the account receive a push notification
over the APNs network. In response, each de-
vice initiates the GetDependantRegistrations
call shown in Figure 8.

2. When an iMessage account is registered to a device
that has not previously been registered to that ac-
count, a notification email is generated and sent to
the account’s registered email.

15OS X 10.11 devices do not employ certificate pinning on this con-
nection either, but they do not appear to send the credentials in plain-
text.

In the first instance, once the APNs push notifi-
cation signaling that a GetDependantRegistrations
call should be executed has arrived at a client, the client
will continuously send the request until it receives a re-
sponse. An active attacker on the victim’s network can
simply block all these requests, but this is not sustain-
able over long periods of time. We discovered that the
client is satisfied when it receives any response — even
a poorly formatted unreadable one. Thus, an attacker
can edit the server response causing it to decode incor-
rectly. The client will accept this response and terminate
the repeated GetDependantRegistrations calls. This
blocks notifications that would alert the victim to the fact
that a new device has been registered to their account.
All subsequent iMessage traffic, both incoming and out-
going, will be forwarded to the attack device. Until a
user logs out of their iMessage client, logs into a new
iMessage client, or manually checks the list of devices
associated with their account, they will never notice that
their traffic is being forwarded to the attack device.

A.3 Updates in OS X 10.11
The ESS messaging protocol changed in a number of
ways with the 10.11 update to OS X. The exchange
of credentials for an authorization token has moved to
point to gsa.apple.com and that connection has cer-
tificate pinning implemented. Due to this fact, we are
unable to MITM this connection, but attempting to login
to an account with bad credentials will result only in a
message to that server and an error message displayed
on the client. Additionally, there is a message sent to
setup.icloud.com with a username and password pair
in which the password is no longer transmitted in plain-
text.

The key substitution attack still worked against OS X
10.11 versions as of November 2015, but the additional
certificate pinning of apsd made it more difficult to in-
tercept the message. In order to make sure the attack still
functioned properly, we recovered the encrypted payload
of the message from the apsd logs and were able to suc-
cessfully decrypt the message using our own keys. Al-
though we are not able to easily intercept the messages
as we could with 10.10.5, this attack still effectively re-
duces the security of iMessage to that of TLS.

B Bypassing TLS

To execute the attacks described in this paper, the at-
tacker must obtain encrypted iMessages from the APNs
link. Since iMessage secures the APNs connection using
TLS, this requires the attacker to penetrate to the TLS en-
cryption on the link between Apple and the end-device.
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Figure 11: On the left is a certificate verification dialog
presented on encountering an unknown wireless access
point. On the right is a root CA installation dialog.

We identified three approaches to bypassing the TLS
on the APNs connections: (1) Apple, or an attacker with
access to Apple’s infrastructure, can intercept the con-
tents of push messages as they transit the APNs servers;
(2) on certain iOS and OS X versions that do not include
certificate pinning for APNs, an attacker with access to
a stolen CA root certificate may be able to conduct an
MITM attack on the TLS connection; or (3) on the same
versions, an attacker can “sideload” a root certificate on
the target device, by briefly taking physical control of it,
or convincing a victim to install a root certificate via a
malicious email or web page. The latter technique is par-
ticularly concerning due to the similarity between Ap-
ple’s interface for installing root CAs, and other non-
critical certificate installation requests that may be pre-
sented to the user (see Figure 11). Since some Apple
operating systems do not use certificate pinning, instal-
lation of a root certificate allows arbitrary interception of
both APNs and HTTPS connections.

We identified attacks (2) and (3) as infeasible on all
iOS 9 versions due to the inclusion of certificate pinning
on APNs connections in that operating system. As of
November 2015 when we first notified Apple of the re-
sults in this paper, we discovered that the then-current
version of OS X 10.11 did not include certificate pin-
ning. In response to our disclosure, Apple added certifi-
cate pinning to OS X as of December 2015.

We stress that given the interest in iMessage expressed
by nation-states [26], a compromise of CA infrastructure
cannot be ruled out. Even without such attacks, there
have been several recent examples of CA-signed root or
intermediate certificates being issued for use within cor-
porate middle-boxes, primarily for the purposes of enter-
prise TLS interception [5]. TLS interception may occur
even within Apple OS distributions: a recent incident in-
volving iOS 9 allowed ad-blocking software to install a
TLS root certificate [6].
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