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How hard is it to detect some cliques?

Josh Burdick

Abstract

Shannon’s function-counting argument [1] showed that most Boolean functions have
exponential circuit complexity, but doesn’t provide a specific example of such a hard-
to-compute function. A simple modification of that argument shows that detecting
a randomly-chosen subset of the k-vertex cliques in an n-vertex graph requires, on
average, Ω(nk/2) two-input NAND gates. Unfortunately, this doesn’t directly bound
the complexity of detecting all of the cliques; however, it seems like a related problem.
Here, we attempt to combine a counting argument with random restrictions, to estimate
the number of NAND gates needed to detect some cliques (as a function of the number
of cliques).
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This is an exploration of lower bounds on the the number of gates needed to detect some
of the cliques in a graph. It doesn’t give a strong bound on detecting all of the cliques.
However, hopefully it will add to the long list of possibly-surprising things which would
happen if P = NP [2].

1 A Counting Bound

The first component we use is a slight modification of Shannon’s function-counting argument
[1].

1.1 Background: Lower Bounds From Function Counting

It has long been known that computing some function of a bit string requires exponentially
large circuits [1]. Let f : {0, 1}m → {0, 1} be a function from m-bit vectors to bits. f could
be one of 22

m
possible functions. For each of these functions, there are many circuits (of

varying sizes) which compute it. Suppose we pick the circuit with the fewest gates for each
function (picking one arbitrarily in case of ties). Each of these functions, being different,
must have a different smallest circuit.



If we fix a particular number of gates g, we can only construct a limited number of m-
input circuits; how many depends on the type of gate (known as the basis). Here, we focus
on using two-input NAND gates. If we have g of these available, then a loose approximation
(allowing unbounded inputs) is that there are gm +

(
g
2

)
wires which might or might not be

present, and so we can construct at most 2gm+(g2) circuits. If we consider all possible 22
m

functions, then on average, computing one of those functions requires Ω(
√
2m) = Ω(2m−1)

gates [1].
This argument is simple, but unfortunately is non-constructive: it doesn’t give any specific

example of a hard-to-compute function [1]. There are explicitly-stated functions which are
known to require a linear number of two-input Boolean gates. For instance, there is an
explicitly-stated function which requires 5n − o(n) two-input Boolean gates [3]. However,
although finding such functions and lower bounds is a well-studied problem, there aren’t
known explicitly-stated functions which provably require at least a superlinear number of
two-input gates.

Another problem of interest is CLIQUE: given the edges of a graph, output a 1 if it
contains a k-vertex clique, and 0 otherwise. This has been studied extensively, as it’s a
classic NP-complete problem [4][5]. If we restrict circuits to be “monotone” circuits (which
consist of AND and OR gates, but no NOT gates), then CLIQUE has been shown to require
a superpolynomial [6] number of gates; this bound was later improved to exponential [7].
However, despite considerable effort (reviewed in [2][8]), no similar bounds for CLIQUE are
known for Boolean circuits including AND, OR, and NOT gates.

In its original form, the counting argument considered all possible m-input functions.
However, we can also apply a similar argument to a smaller set of functions. Here, we
modify that argument to apply to a set of functions related to CLIQUE.

1.2 Counting CLIQUE-like Functions

In particular, suppose we are given an n-vertex undirected graph. We can write its adjacency
matrix as an m-bit string (where m =

(
n
2

)
), with 1’s where edges are present (and 0’s

elsewhere). Let k-CLIQUE be the Boolean function which detects k-vertex cliques: given
the edges encoded in this way, it outputs 1 if any k-vertex clique (also known as a Kk) is
present, and 0 otherwise. This is a classic NP-complete problem.

We now consider a “buggy” variant of the k-CLIQUE function, which only detects a
subset of the possible cliques.

Definition 1.1. Let n be the number of vertices in the input graph, and let m =
(
n
2

)
.

Let A ⊆
(
[n]
k

)
be a subset of the possible k-vertex cliques.

BUGGYCLIQUE(A) : {0, 1}m → {0, 1} is the function which is 1 iff any of the Kk’s in A
are present. That is, for each set of cliques A, BUGGYCLIQUE(A) is a function which is 1
if the input contains any clique in A, and 0 otherwise. (Using this nomenclature, k-CLIQUE
= BUGGYCLIQUE(

(
[n]
k

)
)).



As a concrete example (provided by William Gasarch), suppose n = 10 (so the vertices
are 1, . . . , 10), k = 4, and A is the set of all 4-cliques that contain the vertex 2, two other
prime-numbered vertices, and 1 non-prime vertex other than 10. We write out all of A in a
way that is readable given the definition.

{2, 3, 5} ∪ {1}, {2, 3, 5} ∪ {4}, {2, 3, 5} ∪ {6}, {2, 3, 5} ∪ {8}, {2, 3, 5} ∪ {9},
{2, 3, 7} ∪ {1}, {2, 3, 7} ∪ {4}, {2, 3, 7} ∪ {6}, {2, 3, 7} ∪ {8}, {2, 3, 7} ∪ {9},
{2, 5, 7} ∪ {1}, {2, 5, 7} ∪ {4}, {2, 5, 7} ∪ {6}, {2, 5, 7} ∪ {8}, {2, 5, 7} ∪ {9}.
Note that in this case we are asking if one of these 15 possible 4-cliques is in a graph on

10 vertices, rather than the (seemingly harder) question of asking if one of the
(
10
4

)
= 210

possible 4-cliques is in a graph of 10 vertices.
We can bound the number of functions in BUGGYCLIQUE.

Theorem 1.1. Given an n-vertex graph, consider the problem of finding some subset of the
possible k-vertex cliques (referred to here as BUGGYCLIQUE).

There are 2(
n
k) distinct BUGGYCLIQUE functions.

Proof. Let A,B ⊆
(
[n]
k

)
, with A ̸= B, and w.l.o.g. let x ∈ A−B. Then BUGGYCLIQUE(A)

outputs 1 on the input with just the edges in x set to 1 (and 0 everywhere else), while
BUGGYCLIQUE(B) outputs a 0; thus the functions differ on that input.

There are 2(
n
k) subsets of

(
[n]
k

)
, and by the above, each corresponds to a different function.

Thus, we can construct a set of functions which are at least reminiscent of k-CLIQUE.

(Although the size of that set, 2(
n
k), is a fairly large number, it’s still comfortably less than

22
(n2)

, the number of possible Boolean functions on the
(
n
2

)
input wires.)

How many NAND gates do these take to detect? Consider all of the possible functions in
BUGGYCLIQUE, and for each of these, imagine that we know the smallest possible circuit
(using two-input NAND-gates as a basis). Using an argument similar to [1], we know that
on average, these circuits require Ω(nk/2) two-input NAND gates.

Why doesn’t this bound k-CLIQUE? Because we don’t know that the circuit which
detects all of the cliques is one of these larger circuits! As far as what we’ve shown thus far
goes, it could be harder to detect some weird subset of the cliques.

1.3 Using Kolmogorov Complexity

We will use Kolmogorov complexity [9] to show that most BUGGYCLIQUE(A) functions
require large circuits. For a given bit string s, the Kolmogorov complexity K(s) is the length
of the shortest program which outputs s. (We use some fixed universal model of computation,
and count the length of the program in bits; however, the choice of model only affects K(s)
by an additive constant.)

Let L =
(
n
k

)
and let K1, K2, ...KL ⊆

(
[n]
k

)
be the possible Kk’s, sorted in lexicographic

order. Let s be a Kolmogorov-random string of length L, and let A = Ki : si = 1.



Suppose there is a circuit C which detects the cliques in A. Then we can encode A as a
program which, given a circuit, loops through the Ki, printing a 1 iff the circuit detects it,
along with an encoding of the gates and wires of C.

If the circuit C is small, then this encoding (of that program, plus this circuit), is short.
Since most strings are Kolmogorov-random, and thus lack short encodings, it must be that
most circuits for BUGGYCLIQUE are not small.

Defining Levels of BUGGYCLIQUE
Can we identify any features of sets of cliques which might relate to how hard they are to

detect? It seems reasonably intuitive that the hardness of computing BUGGYCLIQUE(A)
should be somehow related to |A|, which is simply the number of cliques it “sees”.

Definition 1.2. Given a set of cliques A ⊆
(
[n]
k

)
, we write CA for the smallest circuit (in

number of gates) which detects only the cliques in A, with ties broken arbitrarily.
We write |CA| for the number of gates in that circuit.

Let M =
(
n
k

)
, and choose i with 0 ≤ i ≤ N . Suppose we randomly sample A ⊆

(
[n]
k

)
,

such that |A| = i; we will refer to this as “level i”. Does the counting bound say anything
about E[|CA|]?

• At the “bottom”, where |A| = 0, there’s only one BUGGYCLIQUE(∅) function, so the
counting argument is useless.

• In the “middle”, where |A| = N/2, there are
(

N
N/2

)
functions, and so the counting argu-

ment gives a nontrivial lower bound for E[|CA|], although without actually constructing
even one difficult function (similarly to Shannon’s bound [1]).

• At the “top”, where |A| = N , there’s only one function – k-CLIQUE – so the counting
argument is, once again, useless.

Thus, the counting bound seems strongest near the “middle”. Note that a set of cliques
chosen uniformly at random is very likely to also be near the “middle”; this highlights the
non-constructivity of the counting bound.

1.4 Upper Bounds

We also consider some simple upper bounds, partly in order to compare them to the lower
bounds. (Upper bounds have also been useful in proving lower bounds, in a phenomenon
which has been called “ironic complexity” [8]. However, in this case, we have not found such
a use for upper bounds.)

We can construct a näıve circuit to detect a subset of cliques.

Theorem 1.2. Let A ⊆
(
[n]
k

)
be a set of cliques in an n-vertex graph. The cliques in

|A| can be detected using 2(
(
k
2

)
− 1)|A| = O(|A|) 2-input NAND gates. (In other words,

|CA| ≤ 2(
(
k
2

)
− 1)|A|.)



Proof. We can construct an AND gate using a NAND gate, followed by a NOT (which we
consider to be a NAND gate with one input connected to the constant 1); we count this as
two NAND gates.

Using
(
k
2

)
− 1 of these, we can AND together all of the inputs in a given clique.

We can use one of these for each of the cliques in A; we can re-use the final inverters to
act as OR gates.

Multiplying these all together gives the upper bound.

Note that this gives an upper bound for k-CLIQUE of O(nk) 2-input NAND gates, for
fixed k.

We can also get an average bound for a “level”, in terms of lower levels.

Theorem 1.3. Let Li = {A ∈
(
[n]
k

)
: |A| = i}.

Let N =
(
n
k

)
, and let 0 < i ≤ j ≤ N , such that i+ j ≤ N .

Then E[|CLi+j
|] ≤ E[|CLi

|] + E[|CLj
|] + 3.

Proof. Randomly pick X ∈ Li and Y ∈ Lj. We can OR the circuits CX and CY together
to obtain a circuit for X ∪ Y . Implementing OR requires three NAND gates, so all told, we
have used ≤ E[|Li|] + E[|Lj|] + 3 gates.

Since we chose X and Y randomly, we get an upper bound for detecting any set of i+ j
cliques.

1.5 Is Detecting More Cliques Harder?

From the upper bounds, it seems that detecting more cliques should be harder – that is, that
as |A| increases, E[|CA|] also increases. We make a weaker conjecture (which would imply
that P ̸= NP ).

Conjecture 1.1. Define L and N as in Theorem 1.3. Then
E[|CLN/2

|] ≤ E[|CLN
|] = |k-CLIQUE|.

This seems intuitive – if detecting half of the cliques is hard, at least on average, how
much easier can detecting all of them be? But that’s only intuition, not proof.

1.6 Connection to Natural Proofs

A natural proof is a type of argument which, if it succeeded, would also violate widely-held
beliefs about strong pseudorandom number generators [10].

Is BUGGYCLIQUE a natural property? Here, we consider the three key criteria. We
consider k to be fixed for each of these.

• Constructivity: BUGGYCLIQUE is computable in time polynomial in the size of the
truth table of f .



• Largeness: BUGGYCLIQUE includes 2(
n
k)/22

n
of the possible n-bit Boolean functions.

For large enough n, this will be fewer than 1/2n of them, so BUGGYCLIQUE doesn’t
satisfy largeness.

• Usefulness: Using a counting argument based on the definition of BUGGYCLIQUE
does show that half of the functions in BUGGYCLIQUE require Ω(nk/2) gates to
compute. But it doesn’t say which half.

Happily, the definition of BUGGYCLIQUE avoids the “largeness” criterion, and so pre-
sumably avoids the “natural proofs” barrier. (Avoiding “largeness” has previously been
noted as one potential way around that barrier [11].)

However, being nonconstructive, it seems to also not meet the “usefulness” criterion – it
doesn’t say much about the hardness of detecting any particular set of cliques.

2 Using Restrictions

A standard method for showing circuit lower bounds is to feed in 0’s or 1’s to particular
inputs of the circuit. This may cause some gates to only output a constant; such gates can
be eliminated. A bound can then be derived by induction; the inductive hypothesis will need
to relate the problem size, and the number of gates which have been eliminated. Methods
using such “restrictions” have been used in lower bounds of formula [12] and circuit [13]
complexity (see also the slides at [14]).

In this paper, we use two-input NAND gates as a basis. This is partly because it seems
convenient to only keep track of one type of gate. (Note that AND, OR, and NOT can each
be implemented using a constant number of NAND gates.) Also, feeding in a 0 to an input
of a circuit consisting of only NAND gates results in a strictly smaller circuit, provided
that the input is connected to some gate. We can apply this to circuits for functions in
BUGGYCLIQUE as follows.

Theorem 2.1. Let A ⊊ B ⊆
(
[n]
k

)
, such that A is what remains of B after removing all

cliques overlapping some edge e ∈ B. Then |CB)| > |CA|.

Proof. Feed in a 0 to e, which is in B; the remaining cliques are A. The resulting circuit
computes BUGGYCLIQUE(A), and so has size at least |CA|. But at least one NAND gate
has been removed by feeding in the 0.

Note that zeroing out an edge can, in general, leave an irregular set of edges to consider.
However, if we zero out all the edges connected to a vertex, then that vertex is absent
from all the cliques remaining. Although this presumably leads to weaker bounds, it seems
convenient. Therefore, here we (usually) only consider the effect of zeroing out all the edges
connected to a vertex, which we refer to as “zeroing out a vertex”.

The Zeroing-out Partial Order Z



Given a set of cliques B, we can zero out some subset of the vertices, and see what set
of cliques A remains. This defines a partial order on the sets of cliques.

Definition 2.1. Let A and B be sets of cliques, with A ⊊ B ⊆
(
[n]
k

)
. We define a relation

Z(A,B) as follows:
Z(A,B) iff there is some set of vertices W such that ∀b ∈ B.W ∈ b, but ∀a ∈ A.W /∈ a.
Thus, A consists of exactly the cliques in B which would be “left over” after zeroing out

the vertices in W .

Figure 1 sketches a Hasse diagram of the relation Z. Overlapping cliques are arguably
difficult to draw, and so we only show three-element cliques (otherwise known as K3’s),

drawn as triangles. Also, we can clearly only show a tiny subset of the 2(
n
k) sets, and so

this is “not to scale” in a variety of ways. In particular, when n is large, the middle layer
dominates the graph, as most of the sets include exactly half of the possible k-cliques. We
emphasize that CLIQUE is shown at the top of this figure merely because it contains the
most cliques – not because we have shown that it requires a large circuit.

Note that we consider the sets of cliques to be “labelled”. That is, if two sets of cliques are
isomorphic (identical except for the numbering of vertices), we consider them to be distinct
sets, detected by distinct minimal circuits.

Z can also be thought of as a meet-semilattice (or lower semilattice), with a unique
minimum, ∅. (We can see that any nonempty set A of cliques requires strictly more gates
than ∅, by feeding in all 0’s to a circuit which detects the cliques in A.) However, any set
of cliques which covers all of the input edges is a maximum (obviously, CLIQUE is one of
these sets). Any two of these maxima are incomparable in Z (as the arcs from any of these
maxima point downward).

Understanding the structure of Z better might be useful. For instance, if we randomly
traverse Z “upwards” (starting from ∅), then at each step, we reach a function which provably
requires more gates. (Note, again, that this doesn’t directly bound CLIQUE; almost all paths
will stop at some other maximum of Z.)

Z is a large graph, and fairly regular (although zeroing out an edge results in an irregular
set of input edges, which seems to complicate reasoning about it). Still, it seems that tools
from random graph theory should help approximate it [15].

Open problem 2.1. Can we approximate properties of Z? For instance, if we take a
random walk on Z, “upwards” starting from ∅, what is the expected number of cliques after
s steps?

2.1 The Rank Of a Set

In the relation Z, how can we show that a set of cliques requires many gates to detect? We
can at least say that detecting a set of cliques A is harder than detecting any set below it in
Z. Therefore, we quantify how many sets of cliques are “below” a given set.
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Figure 1: Hasse diagram of BUGGYCLIQUE functions, detecting subsets of the possible
K3’s on n = 6 vertices. Each K3 is shown as a colored triangle. An arc from the set B to
the set A indicates that |C(B)| > |C(A)|, because zeroing out some vertex of B results in A.
(a) Detecting all the possible cliques in larger graphs will be increasingly difficult (although
how much harder isn’t clear). (b) For instance, detecting this set of cliques on four vertices
is definitely harder than (a), since we can convert from (a) to (b) by feeding in 0’s to some
set of vertices. (c) Detecting a set of cliques which doesn’t overlap much will be harder
(in sufficiently large graphs) than detecting the same number of cliques, when they overlap
maximally, as in (b).



Definition 2.2. For a set of cliques A ⊆
(
[n]
k

)
, define the rank of A to be

rank(A) = |{B : Z(A,B)}| − 1

That is, rank(A) is the number of smaller sets of cliques which can be obtained by zeroing
out some subset of the vertices.

Note that, in general, rank(A) is much smaller than the number of functions in
BUGGYCLIQUE. This is because there are fewer than 2n sets of vertices we could zero

out, but the number of functions in BUGGYCLIQUE is 2(
n
k). Considered as a partial order,

then, Z is “very partial” – most sets of cliques are incomparable.
As a concrete example, consider the case of detecting triangles (K3’s) in 6-vertex graphs.

By Theorem 2.1, detecting triangles in 6-vertex graphs is strictly harder than detecting no
triangles, or detecting triangles in 3, 4, or 5-vertex graphs. Thus, we have:

rank(CLIQUE) = 1 +

(
6

3

)
+

(
6

4

)
+

(
6

5

)
= 1 + 20 + 15 + 6

= 42

However, there are 2(
6
3) = 220 = 1, 048, 576 different functions. Showing that CLIQUE is

harder than 42 of them, then, is a very weak lower bound on the difficulty of CLIQUE.

2.2 Which Sets of Cliques Are Hard To Detect?

The hardness of detecting a set of cliques depends not only on how many cliques are detected,
but also on how they overlap.

Triangles can be detected using matrix multiplication [16], and there are fast algorithms
known for matrix multiplication [17][18][19], so the set of all possible cliques on some set of
vertices, as in Figure 1 (b), can be detected using less than one NAND gate per triangle (in
the limit, for large enough input graphs). On the other hand, if the triangles only overlap
in one edge, as in Figure 1 (c), then to detect all of the triangles, we will definitely need at
least one gate per triangle. We can see this by feeding in 0’s to vertices unique to one of the
triangles, applying Theorem 2.1, and repeating.

Thus, there is some dependence not only on how many cliques are found, but also how
they’re arranged. Based on this, it seems that cliques which overlap more might be easier
to detect, but this isn’t at all certain.

Open problem 2.2. Fix n, k, and N as before, and pick i, with 0 < i < N . What sets of
cliques of size i require the most / least gates to detect?



3 Combining Bounds Using Linear Programming

The counting bound, and using restrictions, are two fairly distinct approaches to obtaining a
lower bound on the complexity of computing BUGGYCLIQUE(A), for various sets of cliques
A. If we combine the approaches, do we get an improved lower bound for CLIQUE?

To do this, we phrase the bound as a linear programming (LP) problem, with a variable
representing the expected number of gates needed for each problem size. Let n be the number
of vertices in the input graph, and k be the size of clique we are detecting. We will consider
not only problems with all n vertices, but also subproblems with fewer vertices; for each
number of vertices, we will consider each possible number of cliques.

Let i be the number of vertices, with k ≤ i ≤ n. Let j be the number of Kk’s in an
n-vertex graph; the range of this will depend on i, and be 0 ≤ j ≤

(
i
k

)
. We define an LP

variable xi,j, which is the expected number of two-input NAND gates needed to detect a
random set of j Kk’s in an i-vertex input graph.

This bound is implemented in countingBound/py/lp gate bound 4.py, in the Git repos-
itory at https://github.com/joshtburdick/misc.

3.1 Constraints From the Counting Argument

One group of constraints is based on the counting argument. Each xi,j represents a set of
functions (or sets of cliques). For each of these, we count the number of functions, and from
that, use the counting argument to get a lower bound on xi,j.

As noted above, this gives a nontrivial bound for detecting half of the cliques, but doesn’t
bound detecting all of them.

3.2 Constraints from Restrictions

We also can derive another group of constraints based on restrictions. Suppose we start with
a set of cliques B, with no more than i vertices, with |B| = j. If we start with the circuit
CB, and zero out a random vertex, then up to

(
i−1
k−1

)
cliques are hit, and we are left with a

set of cliques with no more than i− 1 vertices.
Note that we assume that we “hit” at least one clique. This is because permuting the

vertices of the set of cliques presumably doesn’t change the number of gates needed to detect
them; we could just permute the input wires of the circuit at the same time. Therefore, we
can assume that we’re always picking a vertex which hits at least one clique.

The probability of z cliques being “hit“ has a hypergeometric distribution, which gives
this bound on xi,j:

xi,j ≥ 1 +

min(j,(i−1
k−1))∑

z=1

xi−1,j−z · Hyperg(z;
(
i

k

)
, j,

(
i− 1

k − 1

)
)
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Figure 2: Bounds using different sets of constraints, for n = 10 and k = 5. All gate counts
are using two-input NAND gates.

3.3 Results

Here, we plot the bound, for detecting five-vertex cliques (also referred to as K5s) in graphs
with between five and ten vertices. We add the constraints, and then minimize each xi,j

separately. We plot these bounds using only the counting constraints, the “zeroing out”
restriction constraints, or both.

We get a lower bound for CLIQUE (that is, detecting all
(
10
5

)
= 252 cliques) of ... five

two-input NAND gates. For comparison, note that the näıve upper bound for CLIQUE
(from Theorem 1.2) is 4,536. At its peak (finding 126 cliques, which is half the possible
number), the lower bound is 23 gates; the corresponding upper bound is 2,268.

Here are the bounds near the peak:

Constraints
Num. cliques Counting Zeroing Counting and zeroing

123 23.0 4.98 23.0
124 23.0 4.98 23.0
125 23.0 4.98 23.0
126 23.0 4.99 23.0
127 23.0 4.99 23.0
128 23.0 4.99 23.0
129 23.0 4.99 23.0

Thus, combining these two strategies doesn’t yield an improved bound for CLIQUE. This
raises the question:

Open problem 3.1. Can these strategies be modified to get an improved lower bound on
CLIQUE?



4 Related Work

This strategy relies heavily on a modification of Shannon’s original function-counting argu-
ment [1], combined with random restrictions [12][13].

A related question is whether problems (such as k-SAT) are hard on average [20]. These
efforts seem to focus more on whether random instances of a given problem are hard, rather
than using random problems to show that a specific problem is hard.

If this lower-bound strategy gave a nontrivial lower bound, it would seem potentially
relevant to quantum computing, as the argument makes few restrictions on the sort of gates
used. However, we did use the property of NAND gates that “feeding in a 0 disables a gate”;
it’s not clear whether that’s needed, or holds for quantum gates.

5 Conclusion

We give a lower bound on detecting some set of cliques. It is a simple modification of
Shannon’s counting argument [1], combined with random restrictions [12][13]. This sug-
gests average bounds on functions similar to k-CLIQUE. Unfortunately, however, this is
nonconstructive, and so doesn’t bound the complexity of k-CLIQUE.
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