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The following question was raised by ErdSs and Hajnal [1] recently: 
Construct a graph G which does not contain a complete hexagon such that 
for every coloring of  the edges by two colors there is a triangle all of  whose 
edges have the same color. It is easily checked that G must have more than 
7 vertices. In this note we present such a graph G with 8 vertices. 

Let G denote the graph formed from the complete graph on the vertices 
{1, 2 ..... 8} by removing the 5 edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}. Assume 
that the edges of G can be partitioned into two sets A and B such that 
neither set contains a triangle. We can further assume that {6, 7} E A, 
{7, 8} ~ A, and {6, 8} ~ B. Thus, for x ~ {1, 2, 3, 4, 5} we must have {7, x} ~ B 
since otherwise {7, x} ~ A implies either at least one of {6, x}, {8, x} ~ A 
(forming a triangle in A) or both {6, x} ~ B, {8, x} ~ B (forming a triangle 
in B). This forces all the edges {1, 3}, {3, 5}, {5, 2}, {2, 4}, {4, 1} s A. Now 
for any three distinct points x, y, z ~ {1, 2, 3, 4, 5} we cannot have {6, x} ~ A, 
{6, y} E A, and {6, z} e A since some pair {x, y}, {x, z}, {y, z} is an edge of G in 
A. Hence there must exist at least three distinct points a, b, c e {1, 2, 3, 4, 5} 
such that {6, a} ~ B, {6, b} ~ B, {6, c} e B. A similar argument applied 
to vertex 8 forces the existence of distinct points a', b', c' e {1, 2, 3, 4, 5} 
such that {8, a '}EB, {8, b '}eB,  {8, c '}eB.  But there must exist 
w ~ {a, b, c} c~ {a', b', c'} and the triangle with vertices {6, 8, w} is in B 
which is a contradiction. G clearly does not contain a complete hexagon 
and the proof is complete. 

To the best of the author's knowledge, the first example of a graph 
satisfying the conditions of Erd6s and Hajnal was given by J. H. van Lint; 
subsequently L. P6sa showed the existence of such a graph containing no 
complete pentagon and Jon Folkman constructed such a graph containing 
no complete quadrilateral (all unpublished). 
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