Note

On Edgewise 2-Colored Graphs with Monochromatic Triangles and Containing No Complete Hexagon

R. L. GRAHAM

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey Communicated by J. Riordan

The following question was raised by Erdös and Hajnal [1] recently: Construct a graph G which *does not contain a complete hexagon* such that for every coloring of the edges by two colors there is a triangle all of whose edges have the same color. It is easily checked that G must have more than 7 vertices. In this note we present such a graph G with 8 vertices.

Let G denote the graph formed from the complete graph on the vertices $\{1, 2, \dots, 8\}$ by removing the 5 edges $\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 1\}$. Assume that the edges of G can be partitioned into two sets A and B such that neither set contains a triangle. We can further assume that $\{6, 7\} \in A$, $\{7, 8\} \in A$, and $\{6, 8\} \in B$. Thus, for $x \in \{1, 2, 3, 4, 5\}$ we must have $\{7, x\} \in B$ since otherwise $\{7, x\} \in A$ implies *either* at least one of $\{6, x\}, \{8, x\} \in A$ (forming a triangle in A) or both $\{6, x\} \in B$, $\{8, x\} \in B$ (forming a triangle in B). This forces all the edges $\{1, 3\}, \{3, 5\}, \{5, 2\}, \{2, 4\}, \{4, 1\} \in A$. Now for any three distinct points x, y, $z \in \{1, 2, 3, 4, 5\}$ we cannot have $\{6, x\} \in A$, $\{6, y\} \in A$, and $\{6, z\} \in A$ since some pair $\{x, y\}, \{x, z\}, \{y, z\}$ is an edge of G in A. Hence there must exist at least three distinct points a, b, $c \in \{1, 2, 3, 4, 5\}$ such that $\{6, a\} \in B$, $\{6, b\} \in B$, $\{6, c\} \in B$. A similar argument applied to vertex 8 forces the existence of distinct points $a', b', c' \in \{1, 2, 3, 4, 5\}$ such that $\{8, a'\} \in B$, $\{8, b'\} \in B$, $\{8, c'\} \in B$. But there must exist $w \in \{a, b, c\} \cap \{a', b', c'\}$ and the triangle with vertices $\{6, 8, w\}$ is in B which is a *contradiction*. G clearly does not contain a complete hexagon and the proof is complete.

To the best of the author's knowledge, the first example of a graph satisfying the conditions of Erdös and Hajnal was given by J. H. van Lint; subsequently L. Pósa showed the existence of such a graph containing no complete *pentagon* and Jon Folkman constructed such a graph containing no complete *quadrilateral* (all unpublished).

Reference

Printed in Belgium

^{1.} P. ERDÖS AND A. HAJNAL, Research Problem 2-5, J. Combinatorial Theory 2, (1967), 104.