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Abstract 

We give a brief summary of several new results in Euclidean Ramsey theory, a subject which 
typically investigates properties of configurations in Euclidean space which are preserved under 
finite partitions of the space. 

1. Introduction 

Ramsey  theory typically deals with p rob lems  of the following type. We are given 
a set S, a family ~-  of  subsets of  S, and a positive integer r. We would like to decide 
whether  or  not  for every par t i t ion of S =  Caw ... uC ,  into r subsets, some Ci contains 
some Fe~- .  If so, we write S - ~ -  (for a more  complete  t rea tment  of Ramsey  theory, 
see [13]). 

In Euclidean Ramsey  theory, S is usually the set of points  of some Euclidean space 
~N, and the sets on ~ are determined by various geometr ic  considerations.  For  
example,  suppose X is some finite subset of  IF k, and let ~ = ~ N ( X )  denote  the set of 
congruent copies of X in ~N. We say that  X is Ramsey if for all r, there exists 
N = N ( X , r )  such that  E N ~ N ( X ) .  In this case we will use the abbrevia t ion  Y_Nz-'X 

(cf. [2]). 
Ins tead of letting ~ = ~N(X)  be determined by letting the special o r thogona l  g roup  

SO(k) act on X, we could let ~ = ~ ( X )  be the family of  all homothetic copies tX + 

of X (where t is a positive real and ~IFN). Thus,  ~ ( X )  consists of all dilated (by t) and 
t ranslated (by 4) copies of X. In this case, the assert ion ~ : u - ~ ( X ) ,  N = d i m ( X ) ,  is 
a s tandard  result in classical Ramsey  theory due independent ly  to Gallai  and Witt  (see 
[-13]). However ,  for this si tuation the much  s t ronger  density theorem holds (due to 
Furs tenberg  [8]). Wha t  we mean  by this is illustrated by the following example.  For  
X = { 1,2 . . . . .  k}, the assertion E-~ ~ ' ( X )  is just van der Waerden ' s  theorem [21, 13], 
which asserts that  if N = {0, 1, 2, . . .} is par t i t ioned into finitely m a n y  classes Ci, then 
some Ci contains k- term ari thmetic  progressions ( = homothe t ic  copies of  { 1,2 . . . . .  k} ) 
for every k. However ,  this is an immedia te  consequence of Szemer6di 's result [20] that  
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if S c ~ has positive upper density, i.e., 

lim sup 
N ~  N 

I s n { 1 , 2 , . . . , x } [ > 0  ' 

then S contains k-term arithmetic progressions for every k. The theorem of van der 
Waerden is a partition theorem; the (more difficult) theorem of Szemer6di is a density 
version of it. 

One way to formulate density theorems for sets X which are arbitrary finite subsets 
of ~" (rather than subsets of the integer lattice points of E") is to identify the lattice 
generated by integer linear combinations of the x ~ X  with the corresponding integer 
lattice points in the Euclidean space ~lxr (we omit details). 

2. Ramsey sets 

The fundamental question, which remains unanswered at the time of this writing, is 
to characterize Ramsey sets. Let us say that X is spherical if X is contained on the 
surface of some sphere (with finite radius). A basic result in Euclidean Ramsey theory 
is the following. 

Theorem (Erd6s et al. [2]). I f  X is Ramsey then X is spherical. 

Thus, the simplest sets which are not Ramsey are sets X 3 of three collinear points. It 
is known [19] that E N can be always partitioned in 16 sets, none of which contains 
a congruent copy of X3. 

On the other hand, Frankl and R6dl [5] have recently shown that any simplex X* 
(i.e., n + 1 points spanning E") is Ramsey. Also, it is known [2] that if X and X'  are 
Ramsey then so is their Cartesian product X x X'. Quite recently, Kfi~ settled an old 
question in Euclidean Ramsey theory by showing that the set of 5 vertices of a regular 
pentagon is Ramsey. More generally, he showed [14] that if X has a transitive 
automorphism group which is solvable then X is Ramsey. 

It is natural to make the following conjecture. 

Conjecture ($1000). If X is spherical then X is Ramsey. 

3. Sphere-Ramsey sets 

Let S"(p) denote the sphere of radius p centered at the origin in ~:,+1, i.e., 

... n~l X2 =p2} ' 
Sn(P):~'{~-(X1, ,Xn+l):i= 1 
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We say that X is sphere-Ramsey if for all r there exists N = N(X, r) and p = p(X, r) such 
that for any partition SN(p)=CIw ... wC,, some Ci contains a congruent copy of 
X (which we abbreviate by SN(p)~+X). 

Clearly if X is sphere-Ramsey then X is Ramsey (and therefore spherical). Also, it 
can be shown (cf. [16]) that if X and Y are sphere-Ramsey then so is the Cartesian 
product X x Y. 

The following recent result of Matou~ek and R6dl (see also [5]) shows that 
simplexes are sphere-Ramsey. 

Theorem (Matou~ek and R6dl [16]). Suppose X ~ Sk(1) is a simplex. Then for all r and 
all e>0 ,  there exists N = N ( X , r , e )  such that S'V(1 +e)z+X. 

The e occurring in the preceding statement is not a defect of the proof but rather an 
essential ingredient as the following result of the author shows. 

Theorem (Graham [11]). I f  X={Xl  . . . . .  £~}_~St(1) is unit-sphere-Ramsey, i.e., 
S u<x,')(1)4 X, then for any linear dependence 

Y. ci?Zi=0 
i~l 

there must exist a nonempty J ~_ I so that 

cj=O. 
j~J 

As a corollary, if the convex hull of Xc_sk(1) contains the origin 0 then X is not 
unit-sphere-Ramsey (since in this case 0 =-Y~i~l cixi with all ci > 0). 

There is currently no plausible conjecture characterizing the sphere- 
Ramsey sets. 

4. A question of Furstenberg 

Not long ago Bourgain [1] (using tools from harmonic analysis) established the 
following interesting result, a type of density theorem in which the group SO(n) is 
enlarged to allow expansions as well. For a set W_c H :k, define the upper density 3(W) 
of W by 

3(W) := lim sup m(B(O, R)c~ W), 
g ~ ~ m ( B ( O ,  R ) )  

where B(0, R) denotes the k-ball {£=(xl  . . . . .  Xk): k X 2, ~ R 2} centered at the origin, 'Y~i = 1 

and m denotes Lebesgue measure. 
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Theorem (Bourgain [1]). Le t  X = {Xl . . . . .  XR } ~-- E k be a s implex  (i.e., X spans a ( k -  1)- 
space). I f  W~_~_ k with ~ ( W ) > 0  then there exists  to so that f o r  all t> to ,  W contains 

a congruent  copy o f  tX .  

Furstenberg et al. [-9] had earlier results for k = 1 and 2. 
Bourgain also showed that some restriction on X is necessary by exhibiting a set 

Wo with 6(Wo)>0 for which there are t l < t 2 <  .-' tending to infinity, so that 
Wo contains no congruent copy of any h X a ,  where Xa is the set of 3 collinear points 
forming a degenerate (1, 1,2)-triangle. (In fact, essentially the same construction had 
already occurred in [2]). Furstenberg [7] asked whether the same phenomenon 
occurs for any nonspherical set X. The following result shows that this is indeed 
the case. 

Theorem. Le t  X = {21 . . . . .  2,} ~_ E k be nonspherical. Then fo r  any N there exis ts  a set 

W~_~_ N with ~(W)> 0  and a set T c ~  with 6 ( T ) > 0  so that W contains no congruent  

copy o f  t X  f o r  any t eT .  

Proof. We first claim that there must exist constants c2,ca,.. . ,  c, such that 

(i) ~ '=2  c i ( ' ~ i - X l ) = O ,  

(ii) E7=2 Ci(Xi 'Xi--Xl  "-~1): 1 
(so the c~ are not all zero). 

To see this, assume without loss of generality that X is minimally  nonspherical 

(consequently, {21, ..., 2._ 1} is spherical). Now, since X is nonspherical, X cannot be 
a simplex, and consequently the vectors 2~-21,  i=  2, 3 . . . . .  n, must be dependent. That 
is, there exist c~ (not all zero) such that (i) holds. By the minimality assumption, we can 
assume c. 4: 0, and that 21 . . . . .  2._ 1 lie on some sphere, say with center ~ and radius r. 
Since 

Y:i" xi - x 1" x 1 = ( 2i - ~') " (2i - ~)  - (21 - w) " (21 - w) + 2 (xi - 21)" 

then 

• c~(2i" 2 i -  ~1" 21) = ~ c i ( (2 i -  g') " ( ~ -  ~ ' ) -  (21 - ~)" (~1 - ~)) 
i=2 i=2 

+2 ~ ci(2i--2l)'~ 
i=2 

= c , ( (Y.-~ ' ) .  ( 2 . -  ~ , ) -  r2)= b 4:0, 

since by assumption 2. is not on the sphere with center ~, and radius r. We can 
now rescale the cl to make b equal to 1, and so (ii) also holds, and the claim 
is proved. 
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Now, set 

c'1 = -  ~ ci, 
i=2 

c'i=cl, 2 <~ i <~ n. 

Then by (i) and (ii) we have 

( r )  2 7 :  ' -  - 1 C i x i = O  

(ii') ~ "  ' i = 1 CiXi " Xi -~- 1 

(iii') 27=1 e;=0. 
Next, we define the set W. For 1 ~< i~< n, define 

~:={~en:N: /Ic'd'~ll < 1/10n}, 

where rlylr denotes the distance from y to the nearest integer, and set 

W:=(~  Wi. 
i=1 

By standard results in diophantine approximation, ~ W> 0. Note that W consists of 
spherical shells centered at the origin. 

Consider now the expanded copy t X  of X and suppose a congruent copy of it 
occurs in W. By the spherical symmetry of W, there must exist a point dE~ :s such that 
the translate t X  + ~ also is a subset of W. However, 

c~( t .~ i+d) ' ( tY i+d)=t  2 c i f f i 'Y i+2td"  c~.~ i + d ' d  ~ c~ (1) 
i=1 i=1 i=1 / i=1 

= t  2 

by (i')-(iii'). Since each t x i + 8 ~ W ~  W, 1 <~i<~n, then 

1 
II c~(t,2i + ~).(t2~ + d)II < 10n 

i.e., 

where Mi 

II c~(tyi + Ft) . (tyi + d) = Mi + el, 

is an integer and lei[ < 1/10n. Then, by (1), 

t 2 =  ~ c i ( t Y l n t - a ) ' ( t x i - b  d)  
i=1 

i=1 i=1 
(2) 

where M is an integer and reJ<l/10. This is clearly impossible if lit211 >1/10 (and 
certainly the lower density of such t is positive). This completes the proof of the 
theorem. [] 
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5. Partition variants 

The example of Bourgain (mentioned in the previous section) of a set W with 
3 ( W ) > 0  and not  containing congruent  copies of t iX3 with t l < t 2 < - . ,  going to 
infinity, and X3 consisting of 3 collinear points (with distances 1) can be strengthened 
by the following example. 

Example.  Define a part i t ion of N :N into four sets C~, 1 ~<i~<4, defined by 

Ci := {~: [_ Y- Y_] -= i(mod 4) } 

where [_-J denotes the floor (=grea tes t  integer) function. Then no Ci contains 
a congruent  copy of (2 t+  1)X3 when t is an integer. To  see this, suppose for some 
integer t, ( 2 t + l ) X = { x , y , z } c C ~  for some i = 0 , 1 , 2 ,  or 3 (see Fig. 1). By the law of 
cosines, 

~" .~ = 37" 37+ (2t + 1) 2 --2(2t  + 1)(37' )7) 1/2 cos 0, 

g" :? = 37" 37 + (2t + 1) 2 + 2(2t + 1) (37- 37)1/2 cos 0, 

which implies 

x ' x + z . Y - 2 3 7 . 3 7 = 2 ( 2 t +  1) 1. (3) 

Since {x, y, z} c Ci then 

2 . ~ = 4 M x + i + e x ,  

37. 37=4My + i + ey, 

z ' z = 4 M z + i + e z .  

Substituting these values into (3) yields 

4(Mx-- 2M r + Mz) + ~ - -  2ey + ez = 2(2t + 1)z, 

Fig. 1. 
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which implies 

for some integer M (since (2t + 1) 2 -  l(mod 8)). However, since 0 ~<ex, ey, ~z < 1, this is 
impossible. 

One suspects that the same result should hold for any nonspherical set X but this is 
not currently known. The same argument can be applied if the corresponding 
c~ expressing the linear dependence of the xi" Yl in (ii') are all rational. 

6. The chromatic number of E" 

An old question in Euclidean Ramsey theory asks for the minimum number x(n) 
with the property that there is a partition of ~ - " = C l w  ... wCz¢,) such that no Ci con- 
tains two points at mutual distance 1. This first seems to have been raised for the case 
of [[z by Nelson in 1950 (see [18] for an historical discussion) who pointed out (still) 
the best bounds available: 

4 ~< g(n) ~< 7. (4) 

The lower bound follows by considering the 7 points shown in Fig. 2, where edges 
between points indicate unit distance. The upper bound follows from an appropriate 
7-coloring of a hexagonal tiling of the plane by regular hexagons of diameter 1 - ~. In 
spite of continued efforts, the bounds in (4) have not moved in 40 years. 

Fig. 2. The Moser graph. 
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For a general n, we have (see [6]) 

(1 + o(1))(1.2)" < x(n) <(3 + o(1))". 

The relatively recent lower bound, due to Frankl and Wilson, relies on one of their 
powerful set intersection theorems (see [6]). 

7. Partition theorems in fixed dimension 

Since even two points at unit distance can be prevented in partitions of ~:2 into 
7 sets, one might ask what Euclidean Ramsey theorems could hold when the number 
of sets in the partition is arbitrary (but finite) and the space, e.g., E 2, is fixed. Of course, 
when we allow a sufficiently large group in defining ~ ,  such as the affine group for van 
der Waerden's theorem, then we have the classical results. However, there are other 
possibilities, as the following result shows. 

Theorem (Graham [10]). For any partition of~_" into finitely many classes, some class 

contains, for all ~ > 0  and all sets of  lines L1 . . . . .  L,  which span ~_", a simplex having 
volume ~t and edges through one vertex parallel to the Li. 

This result follows from the following result which has a more discrete flavor. 

Theorem (Graham [10]). For any r there exists a positive integer T(r) so that in any 
partition of the integer lattice points of  ~2 into r classes, some class contains the vertices 

of a right triangle with area T(r). 

We remark that Kunen has shown [15] that under the continuum hypothesis, it is 
possible to partition ~2 into N classes so that no class contains the vertices of any 
triangle with a rational area. 

We close with one of our favorite problems in this topic, namely, the growth rate of 
the van der Waerden function W(n), which is defined to be the least W such that in 
partition of { 1, 2 . . . . .  W} into two classes, some class must always contain an n-term 
arithmetic progression. A recent breakthrough of Shelah [17] (finally) showed that 
W(n) was upper bounded by a primitive recursive function, and in fact 

\ n  l a y e r s  

w(n) _. 

The best-known lower bound grows roughly like n. 2 n. 
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C o n j e c t u r e  ($1000).  

F o r  all n, 

S 
W(n)  <_. 2 2'. 
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