# Euclidean Ramsey Theorems on the *n*-Sphere

R. L. Graham

BELL LABORATORIES, MURRAY HILL, NJ 07974

### **ABSTRACT**

Let us call a finite subset X of a Euclidean m-space  $E^m$  Ramsey if for any positive integer r there is an integer n=n(X;r) such that in any partition of  $E^n$  into r classes  $C_1,\ldots,C_r$ , some  $C_i$  contains a set X' which is the image of X under some Euclidean motion in  $E^n$ . Numerous results dealing with Ramsey sets have been proved in recent years although the basic problem of characterizing the Ramsey sets remains unsettled. The strongest constraints currently known are: (i) Any Ramsey set must lie on the surface of some sphere; (ii) Any subset of the set of vertices of a rectangular parallelepiped is Ramsey. In this paper we examine the corresponding problem in the case that our underlying spaces are (unit) n-spheres  $S^n$  and the allowed motions are orthogonal transformations of  $S^n$  onto itself. In particular, we show that for subsets of  $S^n$  which are not too "large," results similar to (i) and (ii) hold.

### 1. INTRODUCTION

Let us call a finite subset X of  $\mathbb{E}^m$  Ramsey if for any positive integer r there is an integer n = n(X;r) such that in any partition of  $\mathbb{E}^n = \bigcup_{k=1}^r C_k$ , some  $C_i$  contains a set X' which is the image of X under some Euclidean motion in  $\mathbb{E}^n$ . Numerous results dealing with Ramsey sets in  $\mathbb{E}^n$  have been proved in recent years (e.g., see [1], [2], [3], [5], [6], [7], [9], [10], [11]), although the basic problem of characterizing the Ramsey sets remains unsettled. The best results currently known are the following. Let us call a set  $Y \subseteq \mathbb{E}^m$  spherical if it lies on the surface of some sphere in  $\mathbb{E}^m$ , i.e., for some  $\overline{z} \in \mathbb{E}^m$ , all the distances  $d(\overline{z},\overline{y})$ ,  $\overline{y} \in Y$ , are equal (where d denotes Euclidean distance). Also, we call a set  $Y \subseteq \mathbb{E}^m$  a brick if it is the set of  $2^m$  vertices of some rectangular parallelepiped in  $\mathbb{E}^m$ .

# Theorem ([1]).

- (i) Every brick is Ramsey.
- (ii) Every Ramsey set is spherical.

Journal of Graph Theory, Vol. 7 (1983) 105–114 © 1983 by John Wiley & Sons, Inc. CCC 0364-9024/83/010105-10\$02.00 In this article we examine the analogous question for the case that our underlying spaces are (unit) *n*-spheres  $S^n = \{(x_0, \ldots, x_n): \sum_{k=0}^n x_k^2 = 1\}$   $\subseteq \mathbb{E}^{n+1}$  and the allowed motions are orthogonal transformations of  $S^n$  onto itself. In this case the unavoidable sets will be termed "sphere-Ramsey." It will turn out that for sets  $X \subseteq S^n$  which are not too large (in a sense to be made precise later), a result similar to the preceding Theorem holds. For the remaining cases, only very preliminary results are available, although we suspect that much more is very likely true.

### 2. NECESSARY CONDITIONS

**Theorem 1.** Let  $X = \{\overline{x}_1, \dots, \overline{x}_m\}$  be a set of points in  $E^m$  such that:

(i) for some nonempty  $I \subseteq \{1, 2, ..., m\} \equiv [m]$ , there exist nonzero  $\alpha_i$ ,  $i \in I$ , such that

$$\sum_{i\in I}\alpha_i\bar{x}_i=\bar{0};$$

(ii) for all nonempty  $J \subseteq I$ ,

$$\sum_{i\in J}\alpha_j\neq 0.$$

Then there exists r = r(X) such that for any N, there is a partition  $S^N = \bigcup_{k=1}^r C_k$  such that no  $C_i$  contains a copy of X.

**Proof.** Consider the homogeneous linear equation

$$\sum_{i\in I}\alpha_iz_i=0.$$
 (\*)

By (ii), Rado's theorem for the partition regularity of this equation over  $\mathbb{R}^+$  (see [8] or [7]) implies that it is *not* regular, i.e., for some r there is an r-coloring  $\chi$ :  $\mathbb{R}^+ \to [r]$  such that (\*) has no monochromatic solution. Color the points of  $S_+^N = \{(x_0, \ldots, x_N) \in S^N : x_0 > 0\}$  by

$$\chi^*(\bar{x}) = \chi(\bar{u} \cdot \bar{x}),$$

where  $\overline{u}$  denotes the unit vector  $(1,0,0,\ldots,0)$ . Thus, the color of  $\overline{x} \in S_+^N$  just depends on its distance from the "north pole" of  $S_-^N$ .

For each nonempty subset  $J \subseteq I$ , consider the equation

$$\sum_{j\in J}\alpha_jz_j=0. (*)_J$$

Of course, by (ii) this also fails to satisfy the (necessary and sufficient) condition of Rado for partition regularity. Hence, there is a coloring  $\chi_I$  of  $\mathbb{R}^+$  (using  $r_I$  colors) so that  $(*)_I$  has no monochromatic (under  $\chi_I$ ) solution. As before, we can color  $S_I^N$  by giving  $\overline{x} \in S_I^N$  the color

$$\chi_J^*(\bar{x}) = \chi_J(\bar{x} \cdot \bar{u}).$$

Now, form the *product* coloring  $\hat{\chi}$  of  $S_+^N$  by defining for  $\bar{x} \in S_+^N$ ,

$$\hat{\chi}(\overline{x}) = (\chi_I(\overline{x}), \ldots, \chi_I(\overline{x}), \ldots),$$

where the sequence has length  $2^{|I|} - 1$  and the indices of the  $\chi_I$  range over all nonempty subsets  $J \subseteq I$ . The number of colors required by the coloring  $\hat{\chi}$  is at most  $\prod_{0 \neq I \subseteq I} r_i \equiv R$ .

An important property of  $\hat{\chi}$  is this. Suppose we extend  $\hat{\chi}$  to  $S_0^N \equiv \{(x_0,\ldots,x_N) \in S^N \colon x_0 \geq 0\}$  by assigning all R colors to any point in  $S_0^N \setminus S_+^N$  i.e., having  $x_0 = 0$ . Then the *only* monochromatic solution to (\*) in  $R^+ \cup \{0\}$  is  $z_i = 0$  for all  $i \in I$ .

Next, construct a similar coloring  $\check{\chi}$  on  $S_-^N = \{-\bar{x} : \bar{x} \in S_+^N\}$ , but using R completely different colors. This assures that any set X which hits both hemispheres  $S_+^N$  and  $S_-^N$  cannot be monochromatic. Finally, we have to color the equator

$$S^{N-1} = \{ \overline{x} \in S^N : x_0 = 0 \}.$$

By our construction, any copy of X which is not contained entirely in  $S^{N-1}$  cannot be monochromatic. Hence, it suffices to color  $S^{N-1}$  avoiding monochromatic copies of X where we may use any of the 2R colors previously used in the coloring of  $S_+^N \cup S_-^N$ . By induction, this can be done provided we can so color  $S^1$ . However, since m > 1, then  $S^1$  can in fact always be 3-colored without a monochromatic copy of X (in fact, of any 2-element subset of X since the corresponding graph has maximum degree 2). This proves the theorem.

Note that if X is a constant distance  $d \neq 90^{\circ}$  from some point  $\overline{t} \in S^n$ , then X cannot satisfy both (i) and (ii). For

$$\sum_{i\in I}\alpha_i\bar{x}_i=\bar{0}$$

implies

$$0 = \overline{t} \cdot \left(\sum_{i \in I} \alpha_i \overline{x}_i\right) = \sum_{i \in I} \alpha_i \overline{t} \cdot \overline{x}_i = (\cos d) \cdot \sum_{i \in I} \alpha_i$$

i.e.,

$$\sum_{i\in I} \alpha_i = 0$$

since  $\cos d \neq 0$ .

However, these are not the only sets not ruled out from being possible Ramsey sets by Theorem 1. Another such example is given by the 3-point set

$$T = \left\{ (1,0), \left( -\frac{1}{2}, \frac{\sqrt{3}}{2} \right), \left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \right\} = \{t_1, t_2, t_3\}$$

(corresponding to the three cube roots of unity). Their linear dependence is given by

$$t_1 - t_2 - t_3 = \overline{0}$$

which does not satisfy (ii).

We restate Theorem 1 in its positive form.

**Theorem 1.** If X is sphere-Ramsey, then for any linear dependence  $\Sigma_{i \in I} \alpha_i \overline{x}_i = \overline{0}$  there must exist a nonempty  $J \subseteq I$  such that  $\Sigma_{j \in J} \alpha_j = 0$ .

## 3. SUFFICIENT CONDITIONS—SMALL BRICKS

Let us call an *m*-dimensional brick with edge lengths  $\lambda_1, \lambda_2, \ldots, \lambda_m$  small if

$$\sum_{i=1}^{m} \lambda_m^2 \leq 2. \tag{1}$$

Theorem 2. Every small brick is sphere-Ramsey.

**Proof.** We sketch the proof (which has the same basic structure as that of the Hales-Jewett theorem given in [6]). Let a fixed number r of colors be given. For m = 1, the theorem is immediate: we simply consider the r + 1 points

$$\begin{array}{c}
r+1 \\
(\beta_1, 0, 0, \dots, 0, \gamma) \\
(0, \beta_1, 0, \dots, 0, \gamma) \\
(0, 0, \beta_1, \dots, 0, \gamma) \\
\vdots \\
(0, 0, 0, 0, \dots, \beta_1, \gamma)
\end{array}$$

where  $\beta_1 = \lambda_1/\sqrt{2} \le 1$  and  $\gamma^2 + \beta_1^2 = 1$ . These r+1 points are on  $S^{r+1}$ . Since they are r-colored, then some pair must have the same color. This pair has distance  $\beta_1\sqrt{2} = \lambda_1$ , which is the desired conclusion.

In general, for a  $\lambda_1 \times \ldots \times \lambda_m$  brick B, the set S of points we consider is of the form

$$\frac{N_m}{(0,\ldots,\beta_m,\ldots,0,0,0,\ldots,\beta_{m-1},\ldots,0,0,0,\ldots,0,0,\ldots,\beta_1,\ldots,0,\gamma)}$$

That is, S consists of  $(N_m + N_{m-1} + \cdots + N_1 + 1)$ -tuples in which exactly one of the entries in the jth block (of length  $N_j$ ) is  $\beta_j = \lambda_j / \sqrt{2}$  and all other entries are 0, with the exception of the last entry

$$\gamma = \left(1 - \sum_{j=1}^{m} \beta_j^2\right)^{1/2},$$

chosen so that all points are a unit N-sphere with  $N = N_m + N_{m-1} + \cdots + N_1$ . The hypothesis (1) guarantees that  $\gamma$  is real. The key to this construction is (as usual) in the choice of the  $N_j$ 's. Needless to say, for the proof to work, they must grow very rapidly.

As an example, we consider the case m = 2. Choose  $N_1 = r + 1$ ,  $N_2 = r^{r+1} + 1$ . An r-coloring  $\chi$  of S induces an  $r^{r+1}$ -coloring  $\chi'$  of the set

$$S' = \{ (0, \ldots, \beta_2, \ldots, 0, \gamma) \}$$

by

$$\chi'(s_1') = \chi'(s_2'), \quad s_1', s_2' \in S'$$

iff

$$\chi(s_1't) = \chi(s_2't)$$

for all

$$t \in \{ (0, \ldots, \beta_1, \ldots, 0, \gamma) \} = T_1$$

where the concatenation  $s_1't$  has the obvious interpretation as an element of S. Since  $|S'| = N_2 = r^{r+1} + 1$  and S' is  $r^{r+1}$ -colored, then some pair of points  $s_1'$ ,  $s_2' \in S'$  have  $\chi'(s_1') = \chi'(s_2')$ , i.e.,  $\chi(s_1't) = \chi(s_2't)$  for all  $t \in T_1$ . Since  $\chi$  is an r-coloring and  $|T_1| = N_1 = r + 1$ , then some pair of points  $t,t' \in T_1$  have

$$\chi(s_1't) = \chi(s_1't').$$

Of course, this implies

$$\chi(s_1't) = \chi(s_1't') = \chi(s_2't) = \chi(s_2't').$$

But

$$d(s'_1t, s'_1t') = \beta_1\sqrt{2} = \lambda_1 = d(s'_2t, s'_2t')$$
  
$$d(s'_1t, s'_2t) = \beta_2\sqrt{2} = \lambda_2 = d(s'_1t', s'_2t')$$

so that these 4 points form the desired monochromatic  $\lambda_1 \times \lambda_2$  brick.

The general result follows by the same techniques where, in general, we choose  $N_1 = r+1$  and  $N_{j+1} = 1 + r^{N_1N_2...N_j}$  for  $j \ge 1$ . Specifically, we think of S as  $S(m) \times T(m)$ , where S(m) consists of the  $N_m$   $N_m$ -tuples  $(0, \ldots, \beta_m, \ldots, 0)$  and T(m) consists of the  $N_1N_2 \ldots N_{m-1}$  complementary  $(N_1 + \cdots + N_{m-1} + 1)$ -tuples

$$N_{m-1}$$
  $N_{m-2}$   $N_1$   $0, \ldots, \beta_{m-1}, \ldots, \beta_{m-2}, \ldots, \ldots, \ldots, \beta_1, \ldots, \gamma$ .

The initial r-coloring  $\chi$  of S induces an  $r^{N_1...N_{m-1}}$ -coloring  $\chi'$  of S(m) by

$$\chi'(s_1') = \chi'(s_2'), \quad s_1', s_2' \in S(m)$$

iff

$$\chi(s_1't) = \chi(s_2't)$$
 for all  $t \in T(m)$ .

Since

$$|S(m)| = N_m = 1 + r^{N_1...N_{m-1}},$$

then there exists a pair of points, say  $s_1, s_2 \in S(m)$ , such that

$$\chi'(s_1') = \chi'(s_2').$$

Also, there is induced r-coloring  $\hat{\chi}$  of T(m) by

$$\hat{\chi}(t) = \chi(s_1't), \quad t \in T(m).$$

By induction, there is a monochromatic  $\lambda_1 \times \cdots \times \lambda_m$  brick under the coloring  $\hat{\chi}$  of T(m). By the definition of  $\hat{\chi}$  and  $\chi'$ , this extends to a monochromatic  $\lambda_1 \times \cdots \times \lambda_m$  brick in the original coloring of S.

By suitable manipulations, it can be shown that the  $N_m$  satisfy



**Large Bricks.** Bricks which have a main diagonal of length exceeding 2 seem much less tractable, although we expect that any  $\lambda_1 \times \cdots \times \lambda_m$  brick with

$$\lambda_1^2 + \cdot \cdot \cdot + \lambda_m^2 < 4$$

is sphere-Ramsey. We can only prove this in the case m = 1.

**Theorem 3.** Let B be the set  $\{-\lambda/2, \lambda/2\}$  where  $0 < \lambda < 1$ . Then B is sphere-Ramsey.

**Proof.** It is enough to show that the graph  $G_n$  with vertex set  $S^n$  and edge set  $\{\{\overline{x},\overline{y}\}:d(\overline{x},\overline{y})=\lambda\}$  has chromatic number tending to infinity as n tends to infinity. To prove this, we use the following recent result of Frankl and Wilson (which was suggested by I. Bárány, Z. Füredi, and J. Pach).

**Theorem** [4]: Let  $\mathcal{F}$  be a family of k-sets of [n] such that for some prime power q,

$$|F \cap F'| \not\equiv k \pmod{q}$$

for all  $F \neq F'$  in  $\mathcal{F}$ . Then

$$|\mathcal{F}| \le \binom{n}{q-1}.$$

For a fixed r, choose a prime power q so that

$${2(1+\varepsilon)q \choose (1+\varepsilon)q} > r {2(1+\varepsilon)q \choose q-1},$$
 (2)

where  $\lambda = 2\beta\sqrt{2q}$ , and  $\varepsilon > 0$  and  $\alpha$  are chosen so that

$$\alpha^2 + 2(1+\varepsilon)q\beta^2 = 1$$

and  $N = (1 + \varepsilon)q$  is an integer. Consider the set

$$S = \left\{ (s_0, \ldots, s_{2N}) \colon s_0 = \alpha, \, s_i = \pm \beta, \, \sum_{i=1}^{2N} s_i = 0 \right\}.$$

To each  $s \in S$  associate the subset

$$F(s) = \{i \in [2N]: s_i = \beta\}.$$

Thus, the family

$$\mathscr{F} = \{F(s): s \in S\}$$

consists of the  $\binom{2N}{N}$  N-element subsets of [2N]. If  $F,F'\in\mathcal{F},\,F\neq F'$ , then

$$|F \cap F'| \equiv N \pmod{q}$$

iff

$$|F\cap F'|=N-q=\varepsilon q.$$

If the elements of  $\mathcal F$  are r-colored, then some color class must contain at least

$$\frac{1}{r} \mid \mathcal{F} \mid = \frac{1}{r} \binom{2N}{N} > \binom{2N}{q-1}$$

elements of  $\mathcal{F}$ . However, by Frankl-Wilson, if  $|F \cap F'| = \varepsilon q$  never occurs, then the number of N-sets must be at most  $\binom{2N}{q-1}$ , which is a contradiction. Thus, some monochromatic pair F, F' must have

$$|F\cap F'|=\varepsilon q.$$

This means that the corresponding points  $s, s' \in S$  must (up to a permutation of coordinate positions) look like

$$s = (\alpha, \beta, \dots, \beta, \beta, \beta, \dots, \beta, -\beta, \dots, -\beta, -\beta, \dots, -\beta),$$

$$s' = (\alpha, \beta, \dots, \beta, -\beta, \dots, -\beta, \beta, \dots, \beta, -\beta, \dots, -\beta).$$

$$\epsilon q \qquad q \qquad \epsilon q \qquad q$$

Note that

$$d(s,s') = \sqrt{8q\beta^2} = \lambda$$

and

$$d(s,0) = d(s',0) = \alpha^2 + 2(1+\epsilon)q\beta^2 = 1,$$

i.e.,  $s,s' \in S^{2N}$ . This proves the theorem.

As remarked previously, one would expect that the corresponding result should hold for any  $\lambda_1 \times \cdots \times \lambda_m$  brick provided  $\lambda_1^2 + \cdots + \lambda_m^2 < 4$ . However, we are unable to prove this for even the case m = 2.

# 4. SOME REMARKS ON EDGE COLORINGS

Instead of coloring the points of  $\mathbb{E}^n$ , we could color the line segments in  $\mathbb{E}^n$  and, as before, look for monochromatic copies of some fixed structure C (again, up to some Euclidean motion). A set C of line segments which must always occur monochromatically in an r-coloring of  $\mathbb{E}^n$ , provided only that n is sufficiently large as a function of r (and C),  $r = 1, 2, 3, \ldots$ , is said to be line-Ramsey. Several results on line-Ramsey sets were mentioned in [1], such as the fact that any line-Ramsey set must have all edges the same length (which we can assume is 1).

For a configuration C of unit line segments  $L_i$ , let V(C) denote the set of endpoints of the  $L_i$ . Form a graph G(C) with vertex set V(C) and having all the  $L_i$  as its edges.

**Theorem 4.** Suppose C is a configuration of unit line segments such that:

- (i) V(C) is not spherical;
- (ii) G(C) is not bipartite.

Then C is not line-Ramsey.

**Proof.** Since V(C) is not spherical, then by the previously mentioned necessary condition for V(C) to be Ramsey, there exists an r and, for each N, an r-coloring  $\chi_N$  of  $\mathbb{E}^n$  so that V(C) does not occur monochromatically. Let us color the unit line-segments  $\{x,y\}$  of  $\mathbb{E}^n$  by  $\chi^*(\{x,y\}) = \{\chi(x),\chi(y)\}$ .

Consider a fixed copy C' of C. Since V(C') is not monochromatic, there are two points of V(C'), say x' and y' with  $\chi(x') \neq \chi(y')$ . Suppose C' is monochromatic under  $\chi^*$ . Then all edges of G(C') must have color  $\{\chi(x'),\chi(y')\}$  since both colors  $\chi(x')$  and  $\chi(y')$  occur in the coloring V(C'). By (ii), G(C') is not bipartite, and so, contains an odd cycle. However, it is easy to see that this results in a contradiction since an odd cycle cannot have all its edges with color  $\{\chi(x'),\chi(y')\}$ .

By the same technique, we can show that if V(C) does not lie on two concentric spheres then C cannot be line-Ramsey, even when G(C) is bipartite.

### References

- [1] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I. J. Combinatorial Theory Ser. A 14 (1973) 341-363.
- [2] P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, Euclidean Ramsey theorems II. *Infinite and Finite Sets, Colloq. Math. Soc. János Bolyai* 10 (1973) 529-557.
- [3] P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, Euclidean Ramsey theorems III. Infinite and Finite Sets, Colloq. Math. Soc. János Bolyai 10 (1973) 559-583.
- [4] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences. *Cominatorica 1* (1981) 357-368.
- [5] R. L. Graham, On partitions of E<sup>n</sup>. J. Combinatorial Theory Ser. (A) 28 (1980) 89-97.
- [6] R. L. Graham, Rudiments of Ramsey Theory. Amer. Math. Soc., Providence (1980).
- [7] R. L. Graham, B. L. Rothschild, and J. H. Spencer, *Ramsey Theory*. Wiley, New York (1980).
- [8] R. Rado, Studien zur Kombinatorik. Math. Z. 36 (1933) 424-480.
- [9] L. E. Shader, Several Euclidean Ramsey theorems. *Proceedings of the 5th Southeastern Conference on Combinatorics*. (Graph Theory and Computing, Congressus Num. X). Utilitas Math, Winnipeg (1974) 615-623.
- [10] L. E. Shader, All right triangles are Ramsey in E<sup>2</sup>! J. Combinatorial Theory Ser. A 20(1976) 385-389.
- [11] E. G. Straus, A combinatorial theorem in group theory. *Math. Comp.* 29 (1975) 303-309.