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ABSTRACT

Let us call a finite subset X of a Euclidean m-space E™ Ramsey if for any
positive integer r there is an integer n = n(X;r) such that in any partition of E
into r classes C, . . ., C,. some C; contains a set X' which is the image of X
under some Euclidean motion in E". Numerous results dealing with Ramsey
sets have been proved in recent years although the basic problem of
characterizing the Ramsey sets remains unsettled. The strongest constraints
currently known are: (i) Any Ramsey set must lie on the surface of some
sphere; (ii) Any subset of the set of vertices of a rectangular parallelepiped is
Ramsey. In this paper we examine the corresponding problem in the case that
our underlying spaces are (unit) n-spheres S” and the allowed motions are
orthogonal transformations of 8" onto itself. In particular, we show that for
subsets of §” which are not too “large,” results similar to (i) and (ii) hold.

1. INTRODUCTION

Let us call a finite subset X of E™ Ramsey if for any positive integer r there is
an integer n = n(X;r) such that in any partition of E" = U}_,C,, some C;
contains a set X' which is the image of X under some Euclidean motion in
E”. Numerous results dealing with Ramsey sets in E" have been proved in
recent years (e.g., see [1], [2], [3], [5], [6], [7], [9], [10}, [11]), although the
basic problem of characterizing the Ramsey sets remains unsettled. The best
results currently known are the following. Let us call a set ¥ € E” spherical
if it lies on the surface of some sphere in E™, i.e., for some z € E™, all the
distances d(z,y), y € Y, are equal (where d denotes Euclidean distance).
Also, we call a set YC E™ a brick if it is the set of 2™ vertices of some
rectangular parallelepiped in E™.

Theorem ([1]).
(i) Every brick is Ramsey.
(ii) Every Ramsey set is spherical.
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In this article we examine the analogous question for the case that our
underlying spaces are (unit) n-spheres S" ={(x,,..., Xp): Theoxi =1}
C E™*! and the allowed motions are orthogonal transformations of S* onto
itself. In this case the unavoidable sets will be termed “‘sphere-Ramsey.” It
will turn out that for sets X € $" which are not too large (in a sense to be
made precise later), a result similar to the preceding Theorem holds. For the
remaining cases, only very preliminary results are available, although we
suspect that much more is very likely true.

2. NECESSARY CONDITIONS

Theorem 1. Let X ={X,, ..., X,,} be a set of points in E" such that:

(i) for some nonempty 7 C {12, ... , m} = [m], there exist nonzero a;
1 € I, such that

ax;=0;
jer ! ’

(ii) for all nonempty J C J,
2 #0.
j€J
Then there exists = r(X) such that for any N, there is a partition
SN = Uj., C, such that no C; contains a copy of X.
Proof. Consider the homogeneous linear equation

ES *
fg &,Z; O ( )

By (ii), Rado’s theorem for the partition regularity of this equation over
R* (see[8] or [7]) implies that it is not regular, i.e., for some r there is an r-
coloring x: R* — [r] such that (*) has no monochromatic solution. Color the
points of S¥ = {(xy, ..., xy) € SV : x, > 0} by

x*(¥) = x(u - x),
where u denotes the unit vector (1,0,0, . . . , 0). Thus, the color of x € SY just

depends on its distance from the “north pole” of SV.
For each nonempty subset J C I, consider the equation

2 az,=0. (*),
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Of course, by (ii) this also fails to satisfy the (necessary and sufficient)
condition of Rado for partition regularity. Hence, there is a coloring x; of R*
(using r; colors) so that (*); has no monochromatic (under x,) solution. As
before, we can color S by giving ¥ € SY the color

XF(X)= xA% - u).
Now, form the product coloring x of SY by defining for X € S,

X® = (XAX), . . ., XX, ... ),

where the sequence has length 2!/l — 1 and the indices of the x, range over all
nonempty subsets J & I. The number of colors required by the coloring x is
at most Iy.,c;7; = R.

An important property of x is this. Suppose we extend x to Sy=
{(x0,...,xy) € SV: xy = 0} by assigning all R colors to any point in SY\ S¥
i.e., having x, = 0. Then the only monochromatic solution to (*) in R* U {0}
isz;z=0forall;i€ L

Next, construct a similar coloring X on S¥ = {—x: X € S%}, but using R
completely different colors. This assures that any set X which hits both
hemispheres S% and S¥ cannot be monochromatic. Finally, we have to color
the equator

SVl ={x € §¥: x, = 0).

By our construction, any copy of X which is not contained entirely in SV
cannot be monochromatic. Hence, it suffices to color SV ! avoiding
monochromatic copies of X where we may use any of the 2R colors
previously used in the coloring of S% U S¥. By induction, this can be done
provided we can so color S'. However, since m > 1, then S' can in fact
always be 3-colored without a monochromatic copy of X (in fact, of any 2-
element subset of X since the corresponding graph has maximum degree 2).
This proves the theorem. W

Note that if X is a constant distance d # 90° from some point t € §”, then
X cannot satisfy both (i) and (ii). For

implies



108 JOURNAL OF GRAPH THEORY

ie.,

since cos d # 0.

However, these are not the only sets not ruled out from being possible
Ramsey sets by Theorem 1. Another such example is given by the 3-point set

1 3 1 3
T:{(190)9<~_.2-, \—2‘~>’<_5’— \2 )}: {tl’tZat:i}

(corresponding to the three cube roots of unity). Their linear dependence is
given by

b=t —t;=0

which does not satisfy (ii).
We restate Theorem 1 in its positive form.

Theorem 1. If X is sphere-Ramsey, then for any linear dependence
% 0%; = 0 there must exist a nonempty J C I such that X0 =0.

3. SUFFICIENT CONDITIONS—SMALL BRICKS

Let us call an m-dimensional brick with edge lengths A, \,, . .., A, small
if m
; AL<2. (1)

Theorem 2. Every small brick is sphere-Ramsey.

Proof. We sketch the proof (which has the same basic structure as that of
the Hales—Jewett theorem given in [6]). Let a fixed number 7 of colors be
given. For m = 1, the theorem is immediate: we simply consider the r + 1

points
r+1

(B]’09Oa"~50’7)
(09[3]90’-",0’7)
(OSOsBIa"-’()sY)

(0,0,0,...,8..7)
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where B, =N/~ 2<1 and y* + B} =1. These r + | points are on S"*!.
Since they are r-colored, then some pair must have the same color. This pair
has distance f,v/2 = A, which is the desired conclusion.

In general, fora A\, X ... X A, brick B, the set .S of points we consider is of
the form

N, Now-s N,

©, ... By 0. 0,y Bty 0, 0.0, 0,....8,...,0,7)

That is, S consists of (N,, + N,,., + - - - + N; + I)-tuples in which exactly
one of the entries in the jth block (of length N;) is B, = A;/1/2 and all other
entries are U, with the exception of the last entry

m 1/2
7=<1* > ﬂf) :

chosen so that all points are a unit N-sphere with N=N, + N,_, + - - - +
N, . The hypothesis (1) guarantees that v is real. The key to this construction
is (as usual) in the choice of the N;’s. Needless to say, for the proof to work,
they must grow very rapidly.

As an example, we consider the case m=2. Choose N,=r+1,
N,=7r""+ 1. An r-coloring x of S induces an r*!-coloring x’ of the set

N,
S =1{0,...,B,...,0, 7))

by

X(s1)=x(s3), s),s5&S8
iff

x(sit) = x(s3t)
for all
N,
tENO0, ..., B, ...,0, V=T,

where the concatenation s)¢ has the obvious interpretation as an element of
S. Since [S'|=N,=7r"1+1 and S’ is *'-colored, then some pair of
points 57, s5 € .5 have x'(s)) = x'(s3), Le., x(s12) = x(s3t) for all t € T;.
Since x is an r-coloring and | 7| = N, = r + 1, then some pair of points
Lt € T, have

x(sit) = x(sit).
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Of course, this implies

X(s11) = x(s11") = x(s5t) = x(s3t").
But

d(sit, sit'y = Biv2 =\ =d(s5t, sjt')
d(sit, sht) = B2 =N, =d(s\t’, s5t’)

so that these 4 points form the desired monochromatic A X A, brick.

The general result follows by the same techniques where, in general, we
choose Ny =r+ 1 and N, = 1 + r¥1"2-N for j > 1. Specifically. we think
of § as S(m) X T(m), where S(m) consists of the N,, N, -tuples o,...,
Bus..., 0) and T(m) consists of the N\N;...N,_, complementary
(Ny++ + + + N,_, + 1)-tuples

Nm*l Nm—2 Nl
r — 1 T -1 —
(09'--’ﬂ_M‘19"'5ﬁm—25'-~5"-7~--9B15""Y)'

The initial -coloring x of S induces an rMi-Nm=1_coloring x' of S(m) by
X'(s1)=X(sh), 51,55 € S(m)
iff
X(sit) = x(s3t) for allt € T(m).
Since
|S(m)| =N, =1+ rVi-Nm—1,
then there exists a pair of points, say s, S2 € S(m), such that

X'(51) = X'(s53).

Also, there is induced r-coloring x of T(m) by
X(1)=X(sit), 1€ T(m).
By induction, there is a monochromatic A\, X - - - X A, brick under the

coloring x of T(m). By the definition of x and X', this extends to a
monochromatic A; X - - - X A, brick in the original coloring of S. W
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By suitable manipulations, it can be shown that the N, satisfy
m

C(r+2)

No< (rt2) 02

=({r+2)1m.
Large Bricks. Bricks which have a main diagonal of length exceeding 2
seem much less tractable, although we expectthatany A, X - - - X A,, brick
with
AT+ -+ AL < 4

is sphere-Ramsey. We can only prove this in the case m = 1

Theorem 3. Let B be the set {=N2,M2} where 0 < A < 1. Then B is sphere-
Ramsey.

Proof. 1t is enough to show that the graph G, with vertex set $” and edge
set {{)?,)7] e, y)= )\} has chromatic number tending to infinity as »n
tends to infinity. To prove this, we use the following recent result of Frank]
and Wilson (which was suggested by I. Barany, Z. Fiiredi, and J. Pach).

Theorem [4]: Let % be a family of k-sets of [n] such that for some prime
power g,

|FOF'| #k (mod q)

for all F# F' in %. Then

n
| 7| < < ) .
qg—1
For a fixed r, choose a prime power g so that
2(1+ ¢ 2(1 + ¢
(( )‘1>>r(( )q)’ )
(1+ ¢)q qg —1
where A= 2\/2q, and ¢ > 0 and « are chosen so that

o +2(1+e)gp =1
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and N = (1 + ¢€)g is an integer. Consider the set

N
S = {(so,‘. .., Sn)i So=a, s;= EB, ,;‘ 5= O}.
To each s € § associate the subset
F(s)={i € [2N]: s, = B}.
Thus, the family
= |F(s): s € S}
consists of the (¥) N-element subsets of [2N]. IfFFF€ %, F#F, then
[FMNF'| = N(mod q)
iff
|[FNF'|=N—q=¢q.

If the elements of F are r-colored, then some color class must contain at

least
2N 2N
- | F| == >
N g—1
elements of .%. However, by Frankl-Wilson, if |F ﬂF’l = gq never

occurs, then the number of N-sets must be at most ( N), which is a
contradiction. Thus, some monochromatic pair F, F " must have

|FNF|=eq.

This means that the corresponding points s,s" € S must (up to a permutation
of coordinate positions) look like

€q q &q q
s= (0B BB BB =B BB,
s —(aﬂ ﬁ I_B’ ~’_£a|B’ 9E’I_Ba s_li)

£q q &q q
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Note that
d(s,s')=\8qB = \
and
d(s,0) =d(s’,0) = a* + 2(1 + £)gp2 =1,

ie., ss" € S?. This proves the theorem. B

As remarked previously, one would expect that the corresponding result
should hold for any A, X - - - X A brick provided Aj + - - - + A2 < 4,
However, we are unable to prove this for even the case m = 2.

4. SOME REMARKS ON EDGE COLORINGS

Instead of coloring the points of E”, we could color the line segments in E”
and, as before, look for monochromatic copies of some fixed structure C
(again, up to some Euclidean motion). A set C of line segments which must
always occur monochromatically in an r-coloring of E”, provided only that n
is sufficiently large as a function of » (and C), r=1,2,3, ..., is said to be
line-Ramsey. Several results on line-Ramsey sets were mentioned in 1],
such as the fact that any line-Ramsey set must have all edges the same length
(which we can assume is 1).

For a configuration C of unit line segments L, let V(C) denote the set of
endpoints of the L;. Form a graph G(C) with vertex set V(C) and having all
the L; as its edges.

Theorem 4. Suppose C is a configuration of unit line segments such that:

(i) V(C) is not spherical;
(ii) G(C) is not bipartite,

Then C is not line-Ramsey.

Proof. Since V(C) is not spherical, then by the previously mentioned
necessary condition for V(C) to be Ramsey, there exists an r and, for each NV,
an r-coloring xy of E” so that V(C) does not occur monochromatically. Let
us color the unit line-segments {x y} of E” by X*(x») = {x(x),.x(»)).
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Consider a fixed copy C’ of C. Since V(") is not monochromatic, there are
two points of V(C'), say x' and y’ with x(x") # x(y'). Suppose C’ is
monochromatic under x*. Then all edges of G(C') must have color
{x(x'),x(»")) since both colors x(x") and x(y') occur in the coloring V(C).
By (ii), G(C") is not bipartite, and so, contains an odd cycle. However, it is
easy to see that this results in a contradiction since an odd cycle cannot have
all its edges with color {x(x"),x(»")}. B

By the same technique, we can show that if V(C) does not lie on two
concentric spheres then C cannot be line-Ramsey, even when G(C) is
bipartite.
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