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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 32, Number 2, April 1972

 GENERALIZED RAMSEY THEORY FOR GRAPHS. Il.

 SMALL DIAGONAL NUMBERS

 VACLAV CHVATAL AND FRANK HARARY1

 ABSTRACT. Consider a finite nonnull graph G with no loops or
 multiple edges and no isolated points. Its Ramsey number r(G) is
 defined as the minimum number p such that every 2-coloring of the

 lines of the complete graph K, must contain a monochromatic G.
 This generalizes the classical diagonal Ramsey numbers r(n, n)=
 r(Kn). We obtain the exact value of the Ramsey number of every
 such graph with at most four points.

 1. A celebrated Putnam question. The following question (see [3]) was
 already well known to most of those who knew it. Independently, it found
 its way into a Putnam examination where it attracted much attention:

 "Prove that at a gathering of any six people, some three of them are
 either mutual acquaintances or complete strangers to each other."

 Stated in the natural language [5] of graph theory, this asserts that
 whenever each of the 15 lines of the complete graph K6 is colored either
 green or red, there is at least one monochromatic triangle.

 Actually, there are at least two such triangles, as proved by Goodman
 [3]. Since we cannot color the lines of a graph green and red, we use
 solid and dashed lines instead in all the figures.

 We proposed in [1] the more general approach of 2-coloring the lines of
 any graph G and investigating whether there must occur a monochro-
 matic copy of a specified subgraph F. Henceforth, a 2-coloring of G will
 mean a coloration of the lines of G with the two colors green and red.

 A simple example (Figure 1) illustrating this viewpoint is obtained when
 we set G=C5 and F=P3. Whenever one colors the five lines of C5 with
 two colors, there must obviously occur a monochromatic P3.

 C5:
 t/ ot ~~P3:

 F 1

 FIGURE 1.

 Received by the editors May 13, 1971.
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 390 VACLAV CHVATAL AND FRANK HARARY [April

 2. The diagonal Ramsey numbers. The diagonal Ramsey number

 r(n, n) is defined [5, p. 16] as the smallest p such that in any 2-coloring of

 the complete graph K2,, there always occurs a monochromatic Kn.
 Generalizing this concept, we now define the Ramsey number r(F) for

 any graph F with no isolated points. The value of r(F) is the smallest p such

 that in every 2-coloring of K2,, there always occurs a monochromatic F.
 (This definition of r(F) coincides with that of r(F, 2) introduced in [2].)

 In particular, we have r(n, n)=r(Kn), and trivially r(K2)=2. The Putnam
 problem mentioned above amounts to showing that r(K3) < 6. In fact,
 r(K3)=6 because the ten lines of K5 can be colored green and red in such a
 manner that no monochromatic K3 occurs. There is only one such 2-

 coloring (Figure 2), namely that which gives rise to a red C5 and a green

 C5 (pentagon and pentagram).

 FIGURE 2.

 Greenwood and Gleason [4] proved that r(K4) 18 by (a) producing a
 2-coloring of K.7 which has no monochromatic K4, and (b) showing
 elegantly that every 2-coloring of K1 does contain such a K4. Although
 upper and lower estimations for r(K,,) are known, the exact values of
 r(K,,) with n_S are still entirely open. Thus the determination of r(F) for
 the graphs with at most four points would bring us just up to r(K5). It is
 our object to calculate r(F) exactly for these small graphs.

 3. All stars. The Ramsey numbers of the stars are

 1 r(ff1 m) =K, 2m, m odd,
 =2m -1, m even.

 We first prove (1) for odd m. In this case, there is a regular graph G of
 degree m-1 having 2m-1 points, so its complement G is regular of
 degree m -1. Hence the decomposition (2-coloring) of K2,,,,- into G and G
 shows that r(K,, ,)>2m. The equality holds for in any 2-coloring of K2m,,,
 the green and red degrees of each point u sum to 2m -1, whence one of
 these degrees is at least m.
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 When m is even, if there is a 2-coloring of K2mi. without a monochro-
 matic star Ki m, then both the green and red degree of each point equal
 m-1. But then the green graph is regular of degree m-1, which is a
 contradiction as both mr-1 and 2m- 1 are odd. Thus we have r(Ki m)<
 2m- 1. The equality follows from a decomposition of K2m2 into G and G,
 where G is a regular graph of degree mr-1 with 2m-2 points.

 4. Small generalized Ramsey numbers. There are exactly ten graphs F
 (Figure 3) with at most 4 points, having no isolates. We now find r(F) for

 K2 P3=KI2 K3 2K2 P4

 K C4 K 3+ X K4-X K4 1,3 1

 FIGURE 3.

 each of these. For convenience in identifying them, we use the operations
 on graphs from [5, p. 21], to get a symbolic name for each.

 We have already seen that r(K2)=2, r(K3)=6 and r(K4)= 18. Setting
 m=2 and m=3 in (1), we obtain r(K1,2)=3 and r(K1,3)=6. Thus there are
 just five more graphs to investigate: 2K2, P4, C4, K1,3+x and K4-x.

 r(2K2)=5. There is a 2-coloring of K4 (Figure 4) with no monochro-
 matic 2K2. On the other hand, it is ridiculously simple to verify that there
 is no such 2-coloring of the cycle C5, afortiori of K5.

 FIGURE 4.

 r(P4)=5. By coincidence, Figure 4 shows that r(P4)>4. We now
 exploit the fact, just noted, that every 2-coloring of K5 has a monochro-
 matic 2K2. Let u1u2 and v1v2 be two independent green lines in K5. While

 trying to avoid a green P4, we must color all four lines uiv, red, thus
 producing an all red P4, namely u1v1u2v2.

 r(C4)=6. Luckily, Figure 2 shows that r(C4)>5.
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 392 VACLAV CHVATAL AND FRANK HARARY [April

 Now assume there is a 2-coloring of K6 with no monochromatic 4-cycle,
 C4. As we already have r(K3)=6, there is a (say) green triangle u1u2u3 in

 K6. Let v1, v2, V3 be the other points. From each vi, there is at most one
 green line to this green triangle, for otherwise, we have a green C4. We

 now show that from each vi, there is exactly one green line to the triangle.
 If not, all three lines uiv1 are red. But then the fact that at least two lines
 uiv2 are red gives a red C4, like v1u2v2u3v1. Next we rule out the possibility
 that there is more than one green line from any ui to the vj, as shown in
 Figure 5(a) for u2. This is seen from the red lines in Figure 5(b) which are
 forced while trying to avoid a green C4.

 E / I \~~~~\ / / \\
 \ / I /~~/ \/

 U w ~ ~~~/ / \ U2
 1/

 Ut (a) 3 Ul (b) u3
 FIGURE 5.

 Now we know that there are green lines in this K6 which must look like

 Figure 6, with no other green uivj lines.

 vl F ~~V2 3

 ul u3

 FIGURE 6.

 Clearly all the lines vivi are red. And now we have got it, because
 v1v2v3u2v1 is a red C4.

 r(K1,3+x)=7. The 2-coloring of K6 in which 2K3 is red and K3,3 is
 green (Figure 7) shows that r(K1,3+x)>6. To prove that r(K1 3+x)=7, we
 will show that it is impossible to have a 2-coloring of K7 without a
 monochromatic K1,3+x. To begin, we know by r(K3)=6 that K7 has (say)
 a green K3 with points u1, u2, U3. Call the other points v1 to V4. To avoid an
 immediate green K1 3+x, we need to color all 12 lines uiv3 red (obtaining a

This content downloaded from 
�������������128.8.127.150 on Sat, 16 Nov 2024 21:22:36 UTC������������� 

All use subject to https://about.jstor.org/terms



 1972] GENERALIZED RAMSEY THEORY FOR GRAPHS. II 393

 FIGURE 7.

 red K3,4). Next to avoid a sudden red K1,3+x, all 6 of the lines viv, must be
 green. But behold we have a green K4, hence afortiori a green K1,3+x.

 r(K4-x)= 10. If one stumbles on the correct example quickly (we did
 not), it is not at all difficult to see that r(K4-x)>9. This example, which we

 believe to be the unique correct 2-coloring of Kg, is given by taking the

 cartesian product K3 x K3 of two triangles as the green subgraph. Figure 8

 shows only the green lines; those which are absent are red. Clearly,

 neither K3 xK3 nor its complement contains K4-x.

 K3 x K3

 FIGURE 8.

 We now prove that r(K4-x)= 10. Consider an arbitrary 2-coloring ofK10.

 By (1), there is a monochromatic (say green) K1,5, or in other words a
 point u adjacent greenly to 5 points ui, i= 1 to 5. We can now ignore the
 other four points and concentrate on the 10 lines uAul. There are two
 possibilities. If there is a green P3 on the points ui, say u1u2u3, then these
 2 lines together with the 3 lines u uj, j= 1, 2, 3, form a green K4-x. On the
 other hand, if there is no green P3 on the ui, then there are at most two
 green lines uiu3. But every red graph with 5 points and 8 lines must contain
 a red K4-x, completing the proof.

 5. Conclusions. The small generalized diagonal Ramsey numbers just
 established are summarized in the following table:

 F K2 P3 K3 2K2 P4 K1, 3 C4 K1, 3 + x K4-x K4

 r(F) 2 3 6 5 5 6 6 7 10 18
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 394 VACLAV CHVATAL AND FRANK HARARY

 The next paper [2] in this series derives exact values of the small general-
 ized off-diagonal Ramsey numbers for the above graphs F. These are
 defined on pairs of graphs F1, F2 as the smallest p such that any 2-coloring
 of Kp contains either a green F1 or a red F2. In another sequel [6], all the
 explicit 2-colorings of K6 with the minimum number (two) of monochro-
 matic triangles are displayed.
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