

Generalized Ramsey Theory for Graphs. II. Small Diagonal Numbers

Author(s): Václav Chvátal and Frank Harary

Source: Proceedings of the American Mathematical Society, Apr., 1972, Vol. 32, No. 2 (Apr., 1972), pp. 389-394

Published by: American Mathematical Society

Stable URL: https://www.jstor.org/stable/2037824

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/2037824?seq=1&cid=pdfreference#references_tab_contents You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society

GENERALIZED RAMSEY THEORY FOR GRAPHS. II. SMALL DIAGONAL NUMBERS

VÁCLAV CHVÁTAL AND FRANK HARARY¹

ABSTRACT. Consider a finite nonnull graph G with no loops or multiple edges and no isolated points. Its *Ramsey number* r(G) is defined as the minimum number p such that every 2-coloring of the lines of the complete graph K_p must contain a monochromatic G. This generalizes the classical diagonal Ramsey numbers r(n, n) = $r(K_n)$. We obtain the exact value of the Ramsey number of every such graph with at most four points.

1. A celebrated Putnam question. The following question (see [3]) was already well known to most of those who knew it. Independently, it found its way into a Putnam examination where it attracted much attention:

"Prove that at a gathering of any six people, some three of them are either mutual acquaintances or complete strangers to each other."

Stated in the natural language [5] of graph theory, this asserts that whenever each of the 15 lines of the complete graph K_6 is colored either green or red, there is at least one monochromatic triangle.

Actually, there are at least two such triangles, as proved by Goodman [3]. Since we cannot color the lines of a graph green and red, we use solid and dashed lines instead in all the figures.

We proposed in [1] the more general approach of 2-coloring the lines of any graph G and investigating whether there must occur a monochromatic copy of a specified subgraph F. Henceforth, a 2-coloring of G will mean a coloration of the lines of G with the two colors green and red.

A simple example (Figure 1) illustrating this viewpoint is obtained when we set $G=C_5$ and $F=P_3$. Whenever one colors the five lines of C_5 with two colors, there must obviously occur a monochromatic P_3 .

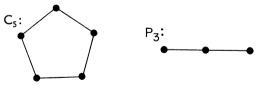


FIGURE 1.

Received by the editors May 13, 1971.

AMS 1970 subject classifications. Primary 05C35, 05A05; Secondary 05C15.

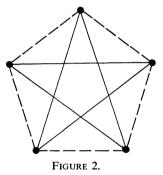
¹Research supported in part by grant AF68–1515 from the Air Force Office of Scientific Research.

O American Mathematical Society 1972

389

2. The diagonal Ramsey numbers. The diagonal Ramsey number r(n, n) is defined [5, p. 16] as the smallest p such that in any 2-coloring of the complete graph K_n , there always occurs a monochromatic K_n .

Generalizing this concept, we now define the Ramsey number r(F) for any graph F with no isolated points. The value of r(F) is the smallest p such that in every 2-coloring of K_p , there always occurs a monochromatic F. (This definition of r(F) coincides with that of r(F, 2) introduced in [2].) In particular, we have $r(n, n)=r(K_n)$, and trivially $r(K_2)=2$. The Putnam problem mentioned above amounts to showing that $r(K_3) \leq 6$. In fact, $r(K_3)=6$ because the ten lines of K_5 can be colored green and red in such a manner that no monochromatic K_3 occurs. There is only one such 2coloring (Figure 2), namely that which gives rise to a red C_5 and a green C_5 (pentagon and pentagram).



Greenwood and Gleason [4] proved that $r(K_4)=18$ by (a) producing a 2-coloring of K_{17} which has no monochromatic K_4 , and (b) showing elegantly that every 2-coloring of K_{18} does contain such a K_4 . Although upper and lower estimations for $r(K_n)$ are known, the exact values of $r(K_n)$ with $n \ge 5$ are still entirely open. Thus the determination of r(F) for the graphs with at most four points would bring us just up to $r(K_5)$. It is our object to calculate r(F) exactly for these small graphs.

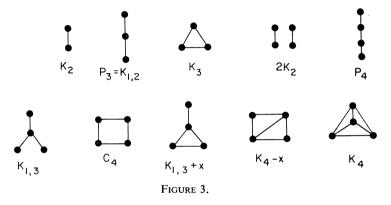
3. All stars. The Ramsey numbers of the stars are

(1)
$$r(K_{1,m}) = 2m, \qquad m \text{ odd},$$
$$= 2m - 1, \qquad m \text{ even}.$$

We first prove (1) for odd m. In this case, there is a regular graph G of degree m-1 having 2m-1 points, so its complement \overline{G} is regular of degree m-1. Hence the decomposition (2-coloring) of K_{2m-1} into G and \overline{G} shows that $r(K_{1,m}) \ge 2m$. The equality holds for in any 2-coloring of K_{2m} , the green and red degrees of each point u sum to 2m-1, whence one of these degrees is at least m.

When *m* is even, if there is a 2-coloring of K_{2m-1} without a monochromatic star $K_{1,m}$, then both the green and red degree of each point equal m-1. But then the green graph is regular of degree m-1, which is a contradiction as both m-1 and 2m-1 are odd. Thus we have $r(K_{1,m}) \leq 2m-1$. The equality follows from a decomposition of K_{2m-2} into G and \overline{G} , where G is a regular graph of degree m-1 with 2m-2 points.

4. Small generalized Ramsey numbers. There are exactly ten graphs F (Figure 3) with at most 4 points, having no isolates. We now find r(F) for



each of these. For convenience in identifying them, we use the operations on graphs from [5, p. 21], to get a symbolic name for each.

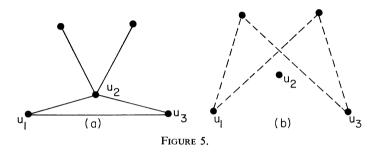
We have already seen that $r(K_2)=2$, $r(K_3)=6$ and $r(K_4)=18$. Setting m=2 and m=3 in (1), we obtain $r(K_{1,2})=3$ and $r(K_{1,3})=6$. Thus there are just five more graphs to investigate: $2K_2$, P_4 , C_4 , $K_{1,3}+x$ and K_4-x .

 $r(2K_2)=5$. There is a 2-coloring of K_4 (Figure 4) with no monochromatic $2K_2$. On the other hand, it is ridiculously simple to verify that there is no such 2-coloring of the cycle C_5 , a fortiori of K_5 .

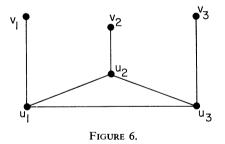
 $r(P_4)=5$. By coincidence, Figure 4 shows that $r(P_4)>4$. We now exploit the fact, just noted, that every 2-coloring of K_5 has a monochromatic $2K_2$. Let u_1u_2 and v_1v_2 be two independent green lines in K_5 . While trying to avoid a green P_4 , we must color all four lines u_iv_j red, thus producing an all red P_4 , namely $u_1v_1u_2v_2$.

 $r(C_4)=6$. Luckily, Figure 2 shows that $r(C_4)>5$.

Now assume there is a 2-coloring of K_6 with no monochromatic 4-cycle, C_4 . As we already have $r(K_3)=6$, there is a (say) green triangle $u_1u_2u_3$ in K_6 . Let v_1, v_2, v_3 be the other points. From each v_i , there is at most one green line to this green triangle, for otherwise, we have a green C_4 . We now show that from each v_i , there is *exactly* one green line to the triangle. If not, all three lines u_iv_1 are red. But then the fact that at least two lines u_iv_2 are red gives a red C_4 , like $v_1u_2v_2u_3v_1$. Next we rule out the possibility that there is more than one green line from any u_i to the v_j , as shown in Figure 5(a) for u_2 . This is seen from the red lines in Figure 5(b) which are forced while trying to avoid a green C_4 .

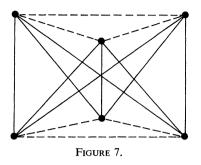


Now we know that there are green lines in this K_6 which must look like Figure 6, with no other green $u_i v_j$ lines.



Clearly all the lines $v_i v_j$ are red. And now we have got it, because $v_1 v_2 v_3 u_2 v_1$ is a red C_4 .

 $r(K_{1,3}+x)=7$. The 2-coloring of K_6 in which $2K_3$ is red and $K_{3,3}$ is green (Figure 7) shows that $r(K_{1,3}+x)>6$. To prove that $r(K_{1,3}+x)=7$, we will show that it is impossible to have a 2-coloring of K_7 without a monochromatic $K_{1,3}+x$. To begin, we know by $r(K_3)=6$ that K_7 has (say) a green K_3 with points u_1, u_2, u_3 . Call the other points v_1 to v_4 . To avoid an immediate green $K_{1,3}+x$, we need to color all 12 lines u_iv_i red (obtaining a



red $K_{3,4}$). Next to avoid a sudden red $K_{1,3}+x$, all 6 of the lines $v_i v_j$ must be green. But behold we have a green K_4 , hence *a fortiori* a green $K_{1,3}+x$.

 $r(K_4-x)=10$. If one stumbles on the correct example quickly (we did not), it is not at all difficult to see that $r(K_4-x)>9$. This example, which we believe to be the unique correct 2-coloring of K_9 , is given by taking the cartesian product $K_3 \times K_3$ of two triangles as the green subgraph. Figure 8 shows only the green lines; those which are absent are red. Clearly, neither $K_3 \times K_3$ nor its complement contains K_4-x .

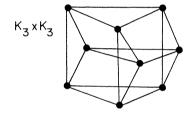


FIGURE 8.

We now prove that $r(K_4-x)=10$. Consider an arbitrary 2-coloring of K_{10} . By (1), there is a monochromatic (say green) $K_{1,5}$, or in other words a point *u* adjacent greenly to 5 points u_i , i=1 to 5. We can now ignore the other four points and concentrate on the 10 lines u_iu_j . There are two possibilities. If there is a green P_3 on the points u_i , say $u_1u_2u_3$, then these 2 lines together with the 3 lines $u u_j$, j=1, 2, 3, form a green K_4-x . On the other hand, if there is no green P_3 on the u_i , then there are at most two green lines u_iu_j . But every red graph with 5 points and 8 lines must contain a red K_4-x , completing the proof.

5. Conclusions. The small generalized diagonal Ramsey numbers just established are summarized in the following table:

394 VÁCLAV CHVÁTAL AND FRANK HARARY

The next paper [2] in this series derives exact values of the small generalized off-diagonal Ramsey numbers for the above graphs F. These are defined on pairs of graphs F_1 , F_2 as the smallest p such that any 2-coloring of K_p contains either a green F_1 or a red F_2 . In another sequel [6], all the explicit 2-colorings of K_6 with the minimum number (two) of monochromatic triangles are displayed.

References

1. V. Chvátal and F. Harary, Generalized Ramsey theory for graphs. I: Diagonal numbers, Period. Math. (to appear).

2. ——, Generalized Ramsey theory for graphs. III: Small off-diagonal numbers, Pacific J. Math. (to appear).

3. A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959), 778-783. MR 21 #6335.

4. R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-7. MR 16, 733.

5. F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. MR 41 #1566.

6. ____, The two-triangle case of the acquaintance graph, Math. Mag. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA

Current address (Chvátal): Department of Operations Research, Stanford University, Stanford, California 94305

Current address (Harary): Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104