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Abstract

We shall show a polynomial time construction of a graph G on N vertices such that
neither G nor G contains Kr,r, for r =

√
N/2

√
log N = o(

√
N). To this end we construct

a subset X ⊆ F
m
2 which has small intersections with all subspaces of dimension m/2.

1 Introduction

In 1947 Erdös proved that there are graphs on N vertices which do not contain a clique
or independent set of size (2 + o(1)) log2 N . This was one of the first applications of the
probabilistic method in combinatorics, a method by which one can prove the existence of a
finite structure without finding a concrete definition of it. Therefore he asked if such graphs,
possibly with a constant larger than 2, can be defined explicitly [4, 3]. This problem is
still open; the best result so far is due to Frankl and Wilson [6]. Frankl and Wilson found
an explicit construction of graphs that do not contain a clique or independent set of size
2Θ(

√
log N log log N). In this paper we shall consider a related problem about bipartite graphs.

Let G = (U, V,E), E ⊆ U × V be a bipartite graph, let |U | = |V | = N . For such graphs
it is well-known that there exist two sets A ⊆ U and B ⊆ V such that either A × B ⊆ E
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or A × B ∩ E = ∅ and |A| = |B| = k = (1 − o(1)) log2 N . In other words either G or its
complement G contains a copy of Kk,k. A probabilistic argument again gives the existence
of N × N bipartite graphs G such that neither G nor its complement G contains a copy of
Kk,k for k = (2 + o(1)) log2 N . The explicit construction problem for bipartite graphs seems
to be more difficult than for ordinary symmetric graphs. This is apparent from the fact that
there are no known constructions of bipartite graphs for which one can prove that neither
they nor their complement contains Kk,k for k = o(

√
N). For k =

√
N such graphs can be

constructed from Hadamard matrices; the proof uses Lindsey’s Lemma (see, e.g., [5]). Notice
that the problem is not only to find a “good candidate” for such a graph, but also to prove
that it has the property. It has been conjectured that the Paley graphs (for prime fields)
provide an example of such graphs for some k = O(log N), but the present proof techniques
allow us only to prove it for k = Θ(

√
N).

In this paper we shall be concerned with the problem of constructing such graphs. First
we shall give a reduction of this problem to the construction of randomly looking subspaces
of F

n
2 (F2 denotes the two-element field). Then we shall present our construction. It is not

explicit in the way that would satisfy Erdös. We shall show that the graph can be constructed
in polynomial time in the size of the graph. Our construction is based on derandomizing
an existence proof of suitable pseudorandom sets on a small support and expanding them
to large ones in order to obtain a polynomial time bound. Thus it does not have a simple
compact description.

The problem of constructing such subspaces is interesting per se, because it can be viewed
as a problem of constructing generators that are pseudorandom with respect to linear tests.
Therefore, in Section 4 we shall survey some related results and show connections to other
problems. A simple observation enables us to improve some results on hitting sets and lower
bounds on bounded depth circuits.

We shall conclude the paper with suggesting number-theoretical construction that might
achieve better parameters and which are quite explicit. For these construction we can only
prove the square root bound, but we feel that for suitable fields one should get more. Also
it seems to us that they are more manageable than the Paley construction, since it is well-
known that the problem of the distribution of quadratic residues is very hard. What is
needed for our constructions is to estimate the sizes of intersections of very simple curves
over F2n with linear spaces over F2.

2 The basic construction

Our starting point is the the inner product graph Hn = (Fn
2 , En) where

(u, v) ∈ En ↔ u · v = 1,

(we use dot for the inner product modulo 2). Let N = 2n denote the number of vertices of
Hn. It is well-known that neither Hn nor Hn contains Kk for k = (1 + o(1))

√
N . In [10] we

showed that this graphs contains an induced subgraph G on
√

N vertices which is Ramsey,
meaning that neither G nor its complement contains Kk for k = (2 + o(1)) log2 N . The same
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can be said about the bipartite version of Hn (this is the bipartite graph (Un, Vn, Fn) in
which the vertices of Un and Vn are indexed by the vectors of F

n
2 , and two vertices indexed

by u and v are connected iff u · v = 1). Again the bipartite version of Hn contains an
induced subgraph G such that neither G nor its (bipartite) complement G contains Kk,k for
k = (2 + o(1)) log2 N . This suggests the problem to find such a subgraph explicitly. As it is
an induced subgraph we are only looking for a suitable subset S of F

n
2 .

For S ⊆ F
n
2 , we let GS be the graph obtained from the bipartite version of Hn by

restricting it to the vertices indexed by elements of S. (Thus GS is the bipartite graph
(US, VS, FS) where US = {ui ; i ∈ S}, VS = {vi ; i ∈ S}, and (ui, vj) ∈ FS iff i · j = 1.)
What we need is stated in the following proposition.

Proposition 1 Suppose every vector space V ⊆ F
n
2 of dimension b(n + 1)/2c intersects S

in less than r elements, then neither GS nor the bipartite complement GS contains Kr,r.

Proof. We shall argue by contradiction. Let X and Y be subsets of S of size r, and suppose
they determine an induced subgraph of GS isomorphic to Kr,r or Kr,r. Thus for some
α ∈ {0, 1}, x · y = α for every x ∈ X and y ∈ Y . Interpreting vectors y as solutions
of the system of linear equations determined by the vectors x and the constant α, we get
dim〈X〉+dim〈Y 〉a ≤ n, where 〈X〉 denotes the vector space spanned by X and 〈Y 〉a denotes
the affine span of Y . Since every affine subspace is contained in a vector subspace whose
dimension is larger by at most 1, we have dim〈X〉 + dim〈Y 〉 ≤ n + 1. Whence either
dim〈X〉 ≤ (n + 1)/2 or dim〈Y 〉 ≤ (n + 1)/2. Thus, by the assumption of the lemma, either
|〈X〉∩S| < r or |〈Y 〉∩S| < r. But X, Y ⊆ S and |X| = |Y | = r, hence this is a contradiction.

Thus we have reduced the Ramsey problem to the problem of finding an explicit set
S ⊆ F

n
2 that has small intersections with all b(n + 1)/2c-dimensional vector spaces. As we

observed in the proof of the lemma, it does not matter if we consider affine subspaces instead
of vector subspaces. Let us stress, however, that the main problem is the explicitness of the
set S, because a random set of size 2n/2 has intersections of size (2 +o(1)) log N . So we want
to find an explicit construction of sets that share some properties of random sets, namely,
they ‘look random for linear sets’.

3 A construction

In this section we shall show a polynomial time construction of a set X such that the
intersections with spaces of dimension m/2 are asymptotically smaller than

√

|X|. By
Proposition 1 this gives a polynomial time construction of a bipartite graph GX with sets of
vertices of size N = 2m such that neither GX nor GX contains Kr,r for r = o(

√
N).

More precisely we prove the following theorem.
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Theorem 2 Let k be an odd natural number, n = 66k and m = kn. Then it is possible to
construct a set X ⊆ F

m
2 , |X| = 2m/2 in time 2O(m) (hence polynomial time in the size of X)

such that for every affine subspace L ⊆ F
n
2 of dimension m/2

|L ∩X| ≤
√

|X|
2
√

log |X|
.

Corollary 3 For infinitely many numbers N it is possible to construct a graph G on N
vertices in time polynomial in N such that neither G nor G contains Kr,r for r =

√
N/2

√
log N .

Here and in the sequel log denotes the logarithm to the base 2 and ln is the natural
logarithm.

The idea of the proof is to construct a Y ⊆ F
n
2 for some small n by derandomizing the

random choice of such a set by the method of conditional expectations. If n is small enough,
then the running time will still be 2O(m). Then we take the product of an odd number of
copies of this set. The fact that an odd number cannot be evenly split will give us the
improvement over the easy square root bound.

We shall start by proving the existence of a suitable set by a counting argument. We
need to control intersections for all dimensions d = 0, . . . , n, because the copies of Y will be
in a much larger vector space. We shall bound the logarithm of the size of the intersections
by the following function:

h(x) =df max(2 log x + 4, x− n/2 + 2),

for 1 ≤ x ≤ n. Observe that the breaking point of the graph of the function h extended to
all real numbers in the interval [1, n], i.e., the number b such that 2 log b + 4 = b− n/2 + 2,
satisfies b = n/2 + 2 log n + 1 + o(1). Thus b < n/2 + 2 log n + 2, for n sufficiently large.

Lemma 4 For all sufficiently large even numbers n, there exists Y ⊆ F
n
2 , |Y | = 2n/2 such

that for all vector subspaces V , if V ∩ Y 6= ∅, then

log |V ∩ Y | ≤ h(dim V ).

Hence for all affine subspaces L, if L ∩ Y 6= ∅, then

log |L ∩ Y | ≤ h(dim L) + 1.

Proof. We shall show that if n is sufficiently large, then for all d ≥ 1 and all vector spaces
V , dim V = d, we have the following estimate for a random Y of size 2n/2:

Pr(log |V ∩ Y | > h(d)) · 2nd < 1/n. (1)

Since 2nd is an upper bound on the number of vector subspaces of dimension d, it follows
that there exists a set Y required in the lemma. Notice that for d above the breaking point
b and 0 ≤ t ≤ n − d, we have h(d + t) = h(d) + t. Also every space of dimension d + t is a
disjoint union of 2t spaces of dimension d. Hence if for such a d the bound log |V ∩Y | ≤ h(d)
holds for all spaces of dimension d, it also holds for all d′ ≥ d. Thus it suffices to prove (1)
for d specified in the following three cases.
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Case 1 n/2 + 2 log n ≤ d < n/2 + 2 log n + 2

For a fixed V ⊆ F
n
2 with dim V = d and a randomly chosen subset Y ⊆ F

n
2 with |Y | = 2n/2

the random variable |V ∩ Y | has hypergeometric distribution with parameters 2n, 2d, and
2n/2. Hence, the expectation E(|V ∩Y |) = λ = 2d−n/2. Consequently, by the inequality (see,
e.g., [8, Theorem 2.10])

Pr(|V ∩ Y | ≥ λ + t) ≤ exp

(

− t2

2λ
+

t3

6λ2

)

(2)

we infer
Pr(log |V ∩ Y | > h(d)) ≤ Pr(log |V ∩ Y | > d− n/2 + 2) ≤ (3)

Pr(|V ∩ Y | ≥ 3 × 2d−n/2) ≤ exp

(

−2

3
2d−n/2

)

.

Thus for n sufficiently large,

2nd exp

(

−2

3
2d−n/2

)

≤ 2n(n/2+2 log n+2) exp

(

−2

3
22 log n

)

=

exp(n2(ln 2/2 − 2/3) + 2 ln 2(n log n + 1)) <
1

n
,

which yields (1) for this case.

Case 2 n/2 ≤ d ≤ n/2 + 2 log n

Recall that h(x) = max(h1(x), h2(x)), where h1(x) = 2 log x + 4 and h2(x) = x − n/2 +
2. Notice that in Case 1 we have shown (1) for h2 instead of h (see (3)). Also we have
h(n/2) = h2(n/2 + 2 log n), whence h(d) = h1(d) ≥ h1(n/2) ≥ dh2(n/2 + 2 log n)

�
for

n/2 ≤ d ≤ n/2 + 2 log n. Thus if we let V be a d-dimensional subspace for an arbitrary d in
the interval [n/2, n/2 + 2 log n] and let V ′ be a dn/2 + 2 log n

�
-dimensional space containing

V , then we have

Pr(log |V ∩ Y | > h(d)) ≤ Pr(log |V ′ ∩ Y | > h2(dn/2 + 2 log n
�
)) ≤ 1

n2n(dn/2+2 log ne)
≤ 1

n2nd
.

Case 3 1 ≤ d < n/2

Again h(d) = 2 log d + 4. In this case we apply the inequality

Pr(|V ∩ Y | ≥ c2d−n/2) ≤
(c

e

)−c2d−n/2

,

(c.f. in [8]) with c = 22 log d+4−d+n/2 to infer that

Pr(|V ∩ Y | ≥ 2h(d)) ≤
(c

e

)−16d2

.
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Since

2nd
(c

e

)−16d2

≤ 2(−n/d+n/2−d+2 log d)16d2

<
1

n

for every d considered above we infer that (1) also holds in this case.

Lemma 5 For 1 ≤ ` ≤ k ≤ N , the binomial coefficient
(

k
`

)

can be computed in time NO(1).

Proof. Using the Pascal triangle the problem is reduced to O(N2) additions of natural num-
bers of length at most N .

Corollary 6 Let 0 ≤ k, s ≤ 2n/2, 1 ≤ d ≤ n, a1, . . . , ak ∈ F
n
2 . Let Y = {y1, . . . , y2n/2} be a

random subset of F
n
2 of size 2n/2. Then a rational number

q =
∑

V, dim V =d

Pr(|V ∩ Y | > s | y1 = a1, . . . , yk = ak)

can be computed in time 2O(n).

Proof. Given a1, . . . , ak ∈ F
n
2 with |{a1, . . . , ak} ∩ V | = `, we have

q =

∑

t>s

(

2d−`
t−l

)(

2n−2d−k+`
2n/2−t−k+`

)

(

2n−k
2n/2−k

) .

Applying Lemma 5 with N = 2n and adding over at most 2n summands yields our claim.

Lemma 7 A set Y satisfying the conditions of Lemma 4 can be constructed using a deter-
ministic algorithm in time 2O(n2).

Proof. We shall apply the method of conditional expectations. For k = 0, 1, . . . , 2n/2 − 1, let

Pk(V, s, a1, . . . , ak) =df Pr(|V ∩ Y | > s | y1 = a1, . . . , yk = ak).

In the proof of Lemma 4 we showed

n
∑

d=1

∑

dim V =d

P0(V, 2h(d)) < 1.

Since
Pk(V, s, a1, . . . , ak) = ExPk+1(V, s, a1, . . . , ak, x),

we have

n
∑

d=1

∑

dim V =d

Pk(V, 2h(d), a1, . . . , ak) = Ex

n
∑

d=1

∑

dim V =d

Pk+1(V, 2h(d), a1, . . . , ak, x).
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Hence, given a1, . . . , ak, we can find ak+1 such that

n
∑

d=1

∑

dim V =d

Pk+1(V, 2h(d), a1, . . . , ak, ak+1) ≤
n

∑

d=1

∑

dim V =d

Pk(V, 2h(d), a1, . . . , ak)

by searching through at most 2n elements of F
n
2 \{a1, . . . , ak}. Since the sum has

∑n
d=1 2nd =

2O(n2) summands, this requires time ≤ 2n · 2O(n2) = 2O(n2). Hence in time ≤ 2n/2 · 2O(n2) =
2O(n2) we find a1, . . . , an/2 such that

n
∑

d=1

∑

dim V =d

Pn/2(V, 2h(d), a1, . . . , a2n/2) < 1.

Since P2n/2 is the characteristic function of the relation |V ∩ Y | > s, we are done.

Proof. (of Theorem 2)
Recall that n = 66k, m = nk and set W = F

n
2 . Take Y ⊆ W from Lemma 7. It can

be constructed in time 2O(n2) = 2O(m). We shall identify F
m
2 with W k. So we can define

X = Y k ⊆ F
m
2 . This is the construction.

Now we shall estimate the size of V ∩X for a subspace V ⊆ F
m
2 . We are interested only

in subspaces of dimension m/2, but the following argument is general. Let d = dim V . We
can represent V as the tree

TV =df {(y1, . . . , yi) ; i = 0, . . . , k, y1, . . . , yi ∈ W, ∃yi+1, . . . , yk ∈ W (y1, . . . , yk) ∈ V }.

Given (y1, . . . , yi) ∈ TV , i < k, the set of the successors of (y1, . . . , yi) in TV

Ly1...yi
=df {yi+1 ; (y1, . . . , yi+1) ∈ TV }

is an affine subspace of W . To see this, let ei: V → W denote the i-th coordinate map and
let πi: V → W i be the projection onto the first i coordinates. For (y1, . . . , yi) ∈ TV , choose
v = (y1, . . . , yi, . . . , yk) ∈ V . Then

Ly1...yi
= ei+1

(

π−1
i (y1, . . . , yi)

)

= ei+1(v + ker πi) = ei+1(v) + ei+1(ker πi)

is an affine space of W of dimension dim ei+1(ker πi), which is the same for all (y1, . . . , yi) ∈
TV . Call this dimension di+1. Writing vi for πi(V ), we have dim Vi+1 = dim Vi + di+1, and
hence

∑k
i=0 di = dim V = d.

Since (y1, . . . , yk) ∈ X iff every yi ∈ Y , we can estimate

|V ∩X| ≤
k−1
∏

i=0

max
(y1,...,yi)∈TV

|Ly1...yi
∩ Y |.
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Due to the property of Y , log |Ly1...yi
∩ Y | ≤ h(di) + 1, and hence

|V ∩X| ≤
k

∏

i=1

2h(di)+1 = 2
Pk

i=1
(h(di)+1).

Hence it remains to estimate max
∑k

i=1 h(di) for d1, . . . , dk such that
∑k

i=1 di = m/2, which
is the content of the following lemma.

Lemma 8 For 0 ≤ d1, . . . , dk ≤ n such that
∑k

i=1 di = m/2,

max
k

∑

i=1

h(di) ≤ m/4 − n/8 + k − 1.

Before proving the lemma, we shall finish the proof of the theorem. Since m = nk and
n = 66k, we have k =

√

m/66 and n =
√

66m. Thus

max
k

∑

i=1

(h(di) + 1) ≤ m/4 − n/8 + 2k − 1 = m/4 −
√

66m/8 + 2
√

m/
√

66 − 1 =

m/4 − 25

4
√

66

√
m− 1 =

1

2
log |X| − 25

4
√

33

√

log |X| − 1 =

1

2
log |X| − 1.087 . . .

√

log |X| − 1 <
1

2
log |X| −

√

log |X|,

for m sufficiently large.

Proof. (of Lemma 8)
We extend the definition of the function h to all real numbers 0 ≤ x ≤ n by defining

h(x) = 4x for 0 ≤ x ≤ 1 and using the original formula for 1 ≤ x ≤ n. We shall prove the
lemma for all real 0 ≤ d1, . . . , dk ≤ n and for the extended h.

Let 0 ≤ d1, . . . , dk ≤ n be such that
∑k

i=1 di = m/2 and
∑k

i=1 h(di) is maximal. Recall
that b denotes the breaking point of h near n/2 and that b = x0 = n/2+log n+o(1) with the
quantity o(1) positive; so n/2 + log n < b < n/2 + log n + 1. Consider the possible positions
of di in the intervals [0, b] and [b, n].

1. W.l.o.g. we can assume that all di ∈ (b, n] are equal to n, except possibly for one.
Indeed, if there are two di, dj ∈ (b, n), di ≤ dj, then we can gradually decrease di and increase
dj until one of them hits an end-point of [d, n]. Let ` be the number of the elements di that
are equal to n. Since kn = m and k is odd, ` ≤ k−1

2
.

2. The number 2
ln 2

is the unique x ∈ (0, b) such that h′(x) = 1; h′(x) > 1 for x < 2
ln 2

,
x 6= 1, and h′(x) < 1 for 2

ln 2
< x < b.

Claim. If some di ∈ (b, n), then all dj ∈ [0, b] are equal to 2
ln 2

.
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Proof. Suppose it were not true. Let di ∈ (b, n) and, dj > 2
ln 2

. Then, for small ε > 0,

di := di + ε and dj := dj − ε would produce larger value of
∑k

i=1 h(di). If dj < 2
ln 2

, then move
the points in the opposite directions.

3. We shall use this claim to prove that in fact: there is no di ∈ (b, n).
Proof. Suppose di ∈ (b, n). Consider two cases. If ` = (k − 1)/2, then, by 2.,

m/2 = n(k − 1)/2 + di +
2

ln 2
(k − 1)/2,

whence

di = m/2 − n(k − 1)/2 −
2

ln 2
(k − 1)/2 = n/2 −

2

ln 2
(k − 1)/2 < b,

which is a contradiction. If ` ≤ (k − 1)/2 − 1, then, by 2.,

m/2 = n`+di+(k−`−1)
2

ln 2
≤ n((k−1)/2−1)+n+k

2

ln 2
= n(k−1)/2+k

2

ln 2
< nk/2 = m/2,

because k 2
ln 2

< 33k = n/2. Thus we have a contradiction again.

4. Since h is convex on [0, b], then there exists a ∈ [0, b] such that all bi ∈ [0, b] are equal
to a. Thus we have ` elements equal to n and k − l elements equal to a.

5. Observe that 64 is the unique number x ∈ [0, b] such that h(x) = x/4; thus h(x) ≤ x/4,
for x ∈ [64, b].

Claim. If n is sufficiently large, then a ≥ 64.
Proof. Suppose that a < 64. Then we have

m/2 = n` + (k − `)a < n(k − 1)/2 + 64(k + 1)/2 =

kn/2 − n/2 + 64(k + 1)/2 = m/2 − 66k/2 + 64(k + 1)/2 < m/2,

which is a contradiction.

6. Finally, we can estimate max
∑k

i=1 h(di).

max
k

∑

i=1

h(di) ≤ h(n)` + h(a)(k − `) ≤ (
n

2
+ 2)` +

a

4
(k − `) =

(
n

4
+ 2)` +

1

4
(a(k − `) + n`) = (

n

4
+ 2)` +

1

4

k
∑

i=1

di ≤

(
n

4
+ 2)(k − 1)/2 + m/8 = m/8 +

n

4
·
k

2
− n/8 + k − 1 = m/4 − n/8 + k − 1.
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4 Pseudorandom sets for linear tests.

In order to apply Proposition 1 we needed a construction of a set S which had small inter-
section with vector spaces of a certain dimension. If we took a random set S instead, then
it would have not only small intersections, but moreover we could show that the sizes of
intersections are concentrated around a value that depends on the size (which is determined
by the dimension) of the vector spaces. Thus we can consider a more difficult problem of
constructing sets S which have intersections with vectors spaces of a given dimension of size
close to the size of such intersections with a random set. We can generalize it further and
take an arbitrary family F of subsets of a set A and ask the same question. This problem
has been studied for various families F . Several technical terms have been used, such as
approximation, discrepancy and pseudorandomness. In this paper we shall use the last one.

In this section we shall show that some well-known construction achieve very good pa-
rameters of pseudorandomness not only with respect to combinatorial rectangles, but also
for vector subspaces. Unfortunately, this concerns only a range of parameters that is not
interesting for the problem of constructing Ramsey graphs.

Definition 1 Let F be a set of subsets of a set A, let S ⊆ A. We say that

• S is ε-pseudorandom for F , if for all W ∈ F ,

|Pr(x ∈ W | x ∈ S) − Pr(x ∈ W )| ≤ ε,

where the probability is taken with respect to the uniform distribution on A (thus
Pr(. . . | x ∈ S) is the probability with respect to the uniform distribution on S);

• S is hitting for F , if for all W ∈ F ,

S ∩W 6= ∅;

• S is r-evasive for F , if for all W ∈ F ,

|S ∩W | ≤ r.

The concepts of pseudorandom and hitting sets are well-known, the concept of evasive
sets is new.

Let us rewrite the inequality defining the ε-pseudorandomness of S as follows

∣

∣

∣

∣

|S ∩W | − |S|
|W |

|A|

∣

∣

∣

∣

≤ ε|S|.

The meaning of this is that the intersection |S ∩W | differs from the expected intersection,
which we would get if S were random, by at most ε|S|. Thus the concept of pseudorandom
sets is the strongest one, as it can be used to prove both the hitting property and the
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evasiveness. However constructions of pseudorandom sets with good parameters ε are known
only for very special families (see [11]).

In the rest of this paper we will consider only set systems F that are all affine subspaces
of F

n
2 of some fixed dimension d. Such a set system will be denoted by Ld,n

2 . Notice that
ε-pseudorandom for Ln−1,n

2 is also called 2ε-biased, [1]. As our aim is to look for constructions
of sets that would give better constructive bounds on Ramsey theorem, we shall call a set S
evasive if it is o(

√

|S|)-evasive for L
n/2,n
2 . Note that we do not specify the size of S, it can

be large, and it can be small. However, we surely want S to be computable in polynomial
time in its size, which may be more difficult to show if S is small.

For applying Proposition 1 it suffices to have sets that are sufficiently evasive only for
vector subspaces, but, since every affine set of dimension d is contained in a vector space of
dimension d + 1, r-evasive set for vector spaces of dimension d + 1 is also r-evasive for Ld,n

2 ,
there is essentially no difference between the two concepts and we can concentrate on affine
sets. (Similarly, ε-pseudorandomness for vector spaces of dimension d and d + 1, implies
3ε-pseudorandomness for Ld,n

2 .)

Pseudorandom sets. We shall show that pseudorandomness is, up to a factor < 2, pre-
served downwards.1 This is an easy consequence of Vazirani’s lemma.

Lemma 9 (Vazirani, see [1]) Let S be ε-pseudorandom multiset for Ln−1,n
2 (= 2ε-biased).

Then for every k ≤ n, 1 ≤ i1 < . . . < ik ≤ n and ai1 , . . . , aik ∈ {0, 1},

∣

∣Pr(xi1 = ai1 , . . . , xik = aik | (x1, . . . , xn) ∈ S) − 2−k
∣

∣ ≤ 2(1 − 2−k)ε. (4)

Corollary 10 Let 1 ≤ k < d < n. If S is ε-pseudorandom for Ld,n
2 , then it is 2(1−2−k−1)ε-

pseudorandom for Ld−k,n
2 .

Proof. 1. First assume d = n− 1. Observe that Vazirani’s lemma says that S is 2(1− 2−k)ε-
pseudorandom for the set system of all combinatorial rectangles of co-dimension k. These
sets are affine sets of co-dimension k of a special form. But any affine set of co-dimension
k can be represented in this form if we suitably change the basis and changing basis has no
influence on the property of being ε-pseudorandom for Ln−1,n

2 . Thus we get the corollary for
d = n− 1.

2. To get the general case, observe that if S is ε-pseudorandom for Ld,n
2 , d < n, then

for every L ∈ Ld+1,n
2 the set S ∩ L is ( 2|S|

|S∩L|ε)-pseudorandom for affine subspaces K of L of
co-dimension 1. Hence to estimate the intersection of S with a affine set K of dimension
d− k take an arbitrary d + 1-dimensional affine space L containing K and apply the above
fact.

1It is not preserved upwards: every set S is 2d/|S|-pseudorandom for Ld,n
2

, simply because the size of the

sets in Ld,n
2

is at most 2d.
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Let us now apply the above result to one of the constructions of [1], the Powering Con-
struction:

C2m
n =df {(x · y, x2 · y, . . . , xn · y) ; x, y ∈ F2m},

where x · y denotes the scalar product of x and y with x, y interpreted as elements of F
m
2 .

We have, treating C2m
n as a multiset,

• |C2m
n | = 22m;

• C2m
n is (n− 1)2−m biased (ie., (n− 1)2−m−1 pseudorandom for Ln−1,n

2 ).

Corollary 11 For 1 ≤ d < n, C2m
n is (1 − 2−n+d)(n− 1)2−m-pseudorandom for Ld,n

2 .

One application of pseudorandom sets is in proving lower bounds on the size of circuits
computing boolean functions. Suppose we have a class C of circuits which for a given n
compute the sets F ⊆ P({0, 1}n). To find a set that cannot be computed by C, we only need
to construct a set S ⊆ {0, 1}n which is sufficiently pseudorandom for F . Namely, we need
an ε-pseudorandom set |S| with ε < 1− |S|/2n. A less trivial application was used in [7]. A
set S is called an ε-discriminator for W , if

|Pr(x ∈ W | x ∈ S) − Pr(x ∈ W | x 6∈ S)| ≥ ε.

Lemma 12 ([7]) Suppose a function f can be computed by a circuit Tm
t (C1, . . . , Cm), where

Tm
t is the threshold function of m boolean variables and threshold t, and C1, . . . , Cm are some

circuits. Then the set S = {a ∈ {0, 1}n ; f(a) = 1} is a 1/m-discriminator for one of the
sets {a ∈ {0, 1}n ; Ci(a) = 1}, i = 1, . . . ,m.

Hence if S is not an ε-discriminator for any of the sets computed by circuits from a class
C, then every circuit of the form Tm

t (C1, . . . , Cm) computing S, with C1, . . . , Cm ∈ C, must
have m ≥ 1/ε. This was used to prove an exponential lower bound on depth 2 threshold
circuits with bounded weights.

Pseudorandomness is closely connected with discriminators. By a straightforward com-
putation we get

Pr(x ∈ W | x ∈ S)− Pr(x ∈ W | x 6∈ S) =
1

Pr(x 6∈ S)
(Pr(x ∈ W | x ∈ S)− Pr(x ∈ W )).

Whence, if S is ε-pseudorandom for F , and |S| < 2n−1, then S is not a 2ε-discriminator for
every W ∈ F . Thus we can apply the above lemma with the circuits Ci computing affine
spaces to prove a lower bound on the size of such circuits computing the set C2m

n . Affine
spaces are defined by circuits that are conjunctions of parities. Hence we can prove a lower
bound on the size of circuits that have the following three levels: a threshold function on the
top, ANDs in the middle level, and parities on the bottom. Taking m = n/2 − 1 we obtain
the following result.

Corollary 13 Let C be a depth three circuit of the type described above and suppose n is
even. If C computes Cn−2

n , then the size of C is at least 2n/2/(n− 2).

This improves an earlier result of Jukna [9], in which the top gate was only allowed to
be an OR gate.
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Hitting sets. Andreev, Clementi and Rolim [2] found an explicit hitting set of size 2O(k)

for Ln−k,n
2 , for k ≥ n2/3+o(1). This is optimal up to the constant in the exponent. Their set

is the set of vectors that encode boolean functions of log2 n variables of circuit complexity
≤ ck/ log k for a suitable constant c (assume n is a power of two). For larger dimensions
they construct a hitting set only for a restricted subset of Ld,n

2 . Using Corollary 11 we can
show that the sets C2m

n are hitting sets also for affine sets of larger dimensions and give more
precise estimates on their size.

Corollary 14 There is an explicit construction of a hitting set for Ld,n
2 whose size is ≤

22(n−d+log
2

n). Namely, it is the set C
2(n−d+log

2
n)

n .

Proof. It suffices to show that C
2(n−d+log

2
n)

n is ε-pseudorandom with ε < 2d/2n, which follows
from Corollary 11.

Evasive sets. Constructions of sets with small bias (=pseudorandom for Ln−1,n
2 ) do give

us bounds for smaller dimensional sets, but not sufficiently good for evasiveness. It is because
the minimal bias that one can achieve for a set of size o(2n) is only of the order of 1/

√

|S|,
see [1].

The approach that we used in our construction for the bipartite Ramsey problem was
to first construct evasive sets in a smaller space and then compose it somehow to get such
a set on F

n
2 . This works very well in case of symmetric graphs. If we first derandomize the

probabilistic construction on a smaller set of vertices and then use the lexicographic product
to get a larger graph, we get almost the same bound as in the Frankl-Wilson construction.
In case of evasive sets the most naive attempt is to take the product of small evasive sets.
This does not work if the number of terms in the product is even, but, as we have shown in
the previous section, we do get some gain if the number of terms is odd. One would expect
that it should not be hard to find a considerably better construction than the product, but
all the other construction that we tried have so far failed.

5 Number-theoretical constructions

We propose to study sets of the form

S = {(x, y) ; f(x, y) = 0},

where f(x, y) = 0 is an algebraic equation over F2n/2 (in (x, y) we interpret x and y as
elements of F

n
2 , while in f(x, y) = 0 as elements of F2n/2 , and we assume that n is even).

We shall show that for y = x3 and xy = 1, the set is O(1/
√

|S|)-evasive for vector spaces
of dimension n/2. This follows from the following observation.

Lemma 15 If X ⊆ S, then |X + X| ≥
(|X|

2

)

.
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Proof. Let (x1, y1), . . . , (x4, y4) ∈ S, (x1, y1) 6= (x2, y2), (x3, y3) 6= (x4, y4) and assume

(x1, y1) + (x2, y2) = (x3, y3) + (x4, y4).

It follows that x1 + x2 = x3 + x4 6= 0. Then we get easily x1x2 = x3x4. Thus {x1, x2} =
{x3, x4}. Hence {(x1, y1), (x2, y2)} = {(x3, y3), (x4, y4)}, since x’s determine y’s.

Now let W be a vector space of dimension n/2. The span of S ∩ W is contained in W
and has size Ω(|S ∩W |2). Hence |S ∩W | = O(2n/4) = O(

√

|S|).
The same can be proved for S defined by y2 + cy = x3 + ax + b (the finite points of an

elliptic curve).

Problem 1 Are these sets evasive?

We only know that they are not evasive if F2n/2 contains a subfield of size 2n/4. This fact
suggests that a positive answer to this problem requires a nonelementary argument.

Notice that the two constructions above are also special cases of the following general
construction

S = {(x, φ(x)) ; x ∈ F
n/2
2 },

determined by a function φ : F
n/2
2 → F

n/2
2 . We know that for a random φ this works perfectly,

so the problem can be phrased: to find a function that looks random to linear tests.2
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