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Abstract. We introduce a new approach to constructing extractors. Extractors are algorithms that
transform a “weakly random” distribution into an almost uniform distribution. Explicit constructions
of extractors have a variety of important applications, and tend to be very difficult to obtain.

We demonstrate an unsuspected connection between extractors and pseudorandom generators. In
fact, we show that every pseudorandom generator of a certain kind is an extractor.

A pseudorandom generator construction due to Impagliazzo and Wigderson, once reinterpreted via
our connection, is already an extractor that beats most known constructions and solves an important
open question. We also show that, using the simpler Nisan–Wigderson generator and standard error-
correcting codes, one can build even better extractors with the additional advantage that both the
construction and the analysis are simple and admit a short self-contained description.

Categories and Subject Descriptors: E.4 [Coding and Information Theory ]; F.0 [Theory of
Computation]—General

General Terms: Theory

Additional Key Words and Phrases: Error-correcting codes, extractors, pseudorandomness

1. Introduction

An extractoris an algorithm that converts a “weak source of randomness” into an
almost uniform distribution by using a small number of additional truly random
bits. Extractors have several important applications (see, e.g., Nisan [1996]). In this
paper, we show that pseudorandom generator constructions of a certain kind are
extractors. Using our connection and some new ideas, we describe constructions of
extractors that improve most previously known constructions and that are simpler
than previous ones.

1.1. DEFINITIONS. We now give the formal definition of an extractor and state
some previous results. We first need to define the notions ofmin-entropyandsta-
tistical difference.
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We say that (the distribution of) a random variableX of range{0, 1}n has min-
entropy at leastk if for every x ∈ {0, 1}n it holds Pr[X = x] ≤ 2−k. If 2k is
an integer, then a canonical example of a distribution having min-entropyk is the
uniform distribution over a setS⊆ {0, 1}n of cardinality 2k. Indeed, it is implicit
in Chor and Goldreich [1988] that if a distribution has min-entropyk, then it is
a convex combination of distributions each one of which is uniform over a set
of size 2k. We consider distributions of min-entropyk as the formalization of the
notion of weak sources of randomness containingk “hidden” bits of randomness.
In the rest of this paper, we often call (n, k)-sourcea random variableX ranging
over{0, 1}n and having min-entropy at leastk. The use of min-entropy to measure
“hidden randomness” has been advocated by Chor and Goldreich [1988] and, in full
generality, by Zuckerman [1990]. The statistical difference between two random
variablesX andY with range{0, 1}n is defined as

||X − Y|| = max
T :{0,1}n→{0,1}

|Pr[T(X) = 1]− Pr[T(Y) = 1]|

= 1

2

∑
v

|Pr[X = v] − Pr[Y = v]|

and we say thatX andY areε-close if ||X − Y|| ≤ ε. For an integerl , we denote
by Ul a random variable that is uniform over{0, 1}l .

A functionExt: {0, 1}n×{0, 1}t→{0, 1}m is a (k, ε)-extractor if for every random
variableX of min entropy at leastk it holds thatExt(X,Ut ) isε-close to the uniform
distribution over{0, 1}m. A weaker kind of combinatorial construction has also been
considered: A functionDisp: {0, 1}n× {0, 1}t → {0, 1}m is a (k, ε)-disperser if for
every subsetS⊆ {0, 1}m such that|S| > ε2m and for everyX of min-entropyk it
holdsPr[Disp(X,Ut ) ∈ S] > 0.

One would like to have, for everyn andk, constructions wheret is very small
andm is as close tok as possible. There are some limitations towards this goal:
One can show that, ifk< n− 1 andε <1/2, then it must be the case thatt ≥
max{log(1/ε) − 1, log(n − k)} [Nisan and Zuckerman 1993], and also it must
be the case thatm ≤ k + t − 2 log(1/ε) + O(1) [Radhakrishnan and Ta-Shma
1997]. It is possible to show (nonconstructively) that for everyn, k, ε, there is a
(k, ε)-extractorExt: {0, 1}n × {0, 1}t → {0, 1}m wheret = O(logn/ε) andm =
k + t − 2 log(1/ε) − O(1). It is an open question to match such bounds with
polynomial-time computable functionsExt.

1.1. PREVIOUS WORK AND APPLICATIONS. The natural application of extrac-
tors is to allow the simulation of randomized algorithms even in (realistic) settings
where only weak sources of randomness are available. This line of research has a
long history, that dates back at least to von Neumann’s [1951] algorithm for gener-
ating a sequence of unbiased bits from a source of biased but identically distributed
and independent bits. More recent work by Santha and Vazirani [1986] and Vazirani
and Vazirani [1985] considered much weaker sources of randomness (that they call
“slightly random” sources) that are still sufficient to allow simulations of arbitrary
randomized algorithms. These results were generalized by Chor and Goldreich
[1988] and Cohen and Wigderson [1989], and finally by Zuckerman [1990], who
introduced the current definition (based on min-entropy) of weak random sources
and a construction of extractors (although the termextractorwas coined later, in
Nisan and Zuckerman [1993]). The main question about simulation of randomized
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algorithms using weak random sources can be stated as follows: suppose that, for
everyn, we have access to a (n, k(n))-source, and that we are given a polynomial-
time randomized algorithm that we want to simulate given only one access to one of
the sources: what is the most slowly growing functionk(·) such that we can have a
polynomial-time simulations? For a “black-box” simulation, where the randomized
algorithm is given as an oracle, it is impossible to solve the simulation problem
in polynomial time with a family of (n, no(1))-sources. The best one can hope to
achieve is to have, for everyδ > 0, a simulation that works in polynomial time
given a (n, nδ)-source. We call such a simulation an entropy-rate optimal simula-
tion. Improved constructions of extractors appeared in several papers,1 but none
of these constructions implies an entropy-rate optimal simulation of randomized
algorithms. Dispersers are objects similar to, but less powerful than, extractors.
Randomized algorithms having one-sided error probability can be simulated by
using weak random sources and dispersers. Saks et al. [1998] give a construction
of dispersers that implies an entropy-rate optimal simulation of one-sided error
randomized algorithms with weak random sources. Andreev et al. [1999] show
how to use the dispersers of Saks et al. [1998] in order to give entropy-rate optimal
simulations of general randomized algorithms using weak random sources. The
result of Andreev et al. [1999] leaves open the question of whether there exists a
construction of extractors that is good enough to imply directly such entropy-rate
optimal simulations.

Extractors are also used to derandomize randomized space-bounded computa-
tions [Nisan and Zuckerman 1993] and for randomness-efficient reduction of er-
ror in randomized algorithms (see Zuckerman [1996b], Goldreich and Zuckerman
[1997], and references therein). They yield oblivious samplers (as defined in Bellare
and Rompel [1994]), that have applications to interactive proofs (see Zuckerman
[1996b] and references therein). They also yield expander graphs, as discovered
by Wigderson and Zuckerman [1993], that in turn have applications to supercon-
centrators, sorting in rounds, and routing in optical networks. Constructions of
expanders via constructions of extractors and the Wigderson–Zuckerman connec-
tion appeared in Nisan and Zuckerman [1993], Srinivasan and Zuckerman [1994],
Ta-Shma [1996], among others. Extractors can also be used to give simple proofs
of certain complexity-theoretic results [Goldreich and Zuckerman 1997], and to
prove certain hardness of approximation results [Zuckerman 1996a]. An excel-
lent introduction to extractors and their applications is given by a recent survey
by Nisan [1996] (see also Nisan and Ta-Shma [1999] and Goldreich [1999] for a
broader perspective).

In Table I, we summarize the parameters of the previous best constructions, and
we state two special cases of the parameters arising in our construction.

1.3. OUR RESULT. The extractors constructed in this paper work for any min-
entropyk = nÄ(1), extract a slightly sublinear fraction of the original randomness
(i.e., the length of the output ism = k1−α for an arbitrarily smallα > 0) and use
O(logn) bits of true randomness. In fact, a more general result holds, as formalized
below.

1 See, for example, Nisan and Zuckerman [1993], Srinivasan and Zuckerman [1994], Ta-Shma [1996],
and Zuckerman [1996b].
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TABLE I. PARAMETERS IN PREVIOUSCONSTRUCTIONS ANDOUR CONSTRUCTION OF(k, ε)
EXTRACTORSExt: {0, 1}n × {0, 1}t → {0, 1}m

Reference Min entropy Output Additional
entropyk lengthm randomnesst

[Goldreich and Wigderson 1997] n− a n−2(a) O(a)
[Zuckerman 1996b] Ä(n) (1− α)k O(logn)
[Ta-Shma 1996] anyk k O((logn)9)
[Ta-Shma 1996] nÄ(1) k1−α O(logn log logn)
[Saks et al. 1998] (disperser) nÄ(1) k1−α O(logn)
[Ta-Shma 1996] (disperser) anyk k− poly logn O(logn)

This paper nÄ(1) k1−α O(logn)
anyk k1−α O((log2 n)/ logk)

Optimal non-explicit anyk k O(logn)
constructions

In the expressions,ε is fixed and arbitrarily small, andα > 0 is an arbitrarily small constant.O(·)
notations hide dependencies onε andα. The constructions in [Saks et al. 1998; Ta-Shma 1998] only
give dispersers, not extractors.

THEOREM1 (MAIN ). There is an algorithm that on input parameters n, k ≤ n,
36 ≤ m < k/2, 0 < ε < 2−k/12 computes inpoly (n, 2t ) time a(k, ε)-extractor
Ext: {0, 1}n × {0, 1}t → {0, 1}m where

t = O

(
(log n/ε)2

log(k/2m)
· exp

(
ln m

log(k/2m)

))
.

In particular, for any fixed constantsε > 0 and 0< γ ′ < γ < 1 we have
for everyn an explicit polynomial-time construction of an (nγ, ε)-extractorExt:
{0, 1}n × {0, 1}O(logn)→ {0, 1}nγ′ .

It should be noted that the running time of our extractor is exponential in the
parametert (additional randomness), and so the running time is superpolynomial
when the additional randomness is superlogarithmic. However, the 2t factors in the
running time of the extractor is payed only once, to construct a combinatorial object
(a “design”) used by the extractor. After the design is computed, each evaluation
of the extractor can be implemented in linear time plus the time that it takes to
compute an error-correcting encoding of the input of the extractor. It is possible
to generate designs more efficiently, and so to have a polynomial-time extractor
construction for every min-entropy. We omit the details of such construction, since
the construction of “weak designs” in Raz et al. [1999] (see below) give better
extractors and is also more efficiently computable.

Our construction improves on the construction of Saks et al. [1998] since we con-
struct an extractor rather than a disperser, and improves over the constructions of
Ta-Shma [1996] since the additional randomness is logarithmic instead of slightly
superlogarithmic. The best previous construction of extractors usingO(logn) ad-
ditional randomness was the one of Zuckerman [1996b], that only works when the
min-entropy is a constant fraction of the input length, while in our construction
every min-entropy of the formnγ is admissible. (On the other hand, the extractor of
Zuckerman [1996b] extracts a constant factor of the entropy, while we only extract
a constant root of it.) Our construction yields an entropy-rate optimal simulation
of randomized algorithms using weak random sources. In contrast to the result of
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Andreev et al. [1999], we can use a weak random source to generate almost uni-
formly distributed random bits independently of the purpose for which the random
bits are to be used.2

Our construction is not yet the best possible, since we lose part of the randomness
of the source and because the additional randomness is logarithmic only as long as
k = nÄ(1). (See also discussion in Section 1.6 below.)

1.4. TECHNIQUES. This paper contains two main contributions.
The first one is a connection (outlined in Section 2) between pseudorandom

generators of a certain kind and extractors. Our connection applies to certain pseu-
dorandom generator constructions that are based on the (conjectured) existence of
predicates (decision problems) that can be uniformly computed in timet(n) but
cannot be solved by circuits of size much smaller thant(n). The analysis of such
constructions shows that, if the predicate is hard, then it is also hard to distin-
guish the output of the generator from the uniform distribution. This implication
is proved by means of a reduction showing how a circuit that is able to distinguish
the output of the generator from the uniform distribution can be transformed into
a slightly larger circuit that computes the predicate. (Impagliazzo and Wigderson
[1997] present one such construction with very strong parameters.) Our result is that
if the (truth table of the) predicate is chosenrandomly, according to a distribution
with sufficiently high min-entropy, then the output of the generator isstatistically
closeto uniform. This statement is incomparable with standard analyses: we use
a stronger assumption (that the predicate israndom instead offixed and hard)
and prove a stronger conclusion (that the output isstatistically closeto, instead
of indistinguishablefrom, the uniform distribution). An immediate application is
that a pseudorandom generator construction of this kindis an extractor. Our re-
sult has a straightforward proof, based on a simple counting argument. The main
contribution, indeed, is thestatementof the result, rather than itsproof, since it
involves a new, more general, way of looking at pseudorandom generator construc-
tions. The Impagliazzo–Wigderson generator, using our connection, is an extractor
that beats some previous constructions and that is good enough to imply entropy-
rate optimal simulations of randomized algorithms. We stress that although the
Impagliazzo–Wigderson generator is known to be a pseudorandom generator only
under unproved conjectures, it isunconditionallya good extractor (i.e., we do not
use any complexity-theoretic assumption in our work).

Our second contribution is a construction that is simpler to describe and an-
alyze (the generator of Impagliazzo and Wigderson is quite complicated) and
that has somewhat better parameters. Our idea is to use a pseudorandom gener-
ator construction due to Nisan and Wigderson [1994], that is considerably sim-
pler than the one of Impagliazzo and Wigderson (indeed the construction of
Impagliazzo and Wigderson contains the one of Nisan and Wigderson as one
of its many components). The Nisan–Wigderson generator has weaker properties
than the Impagliazzo–Wigderson generator, and our ideas outlined in Section 2
would not imply that it is an extractor as well. In Section 3, we show how to use

2 Andreev et al. [1999] show how to produce a sequence of bits that “look random” to a specific
algorithm, and their construction works by having oracle access to the algorithm. So it is not possible
to generate random bits “off-line” before fixing the application where the bits will be used.
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error-correcting codes in order to turn the Nisan–Wigderson generator into a very
good extractor. Section 3 contains a completely self-contained treatment of the
construction and the analysis.

1.5. PERSPECTIVE. For starters, our construction improves upon previous ones
and solves the question of constructing extractors that use a logarithmic amount of
randomness, work for any min-entropy that is polynomially related to the length of
the input and have an output that is polynomially related to the amount of entropy.
Such a construction has been considered an important open question (e.g., in Nisan
and Ta-Shma [1999] and Goldreich [1999]), even after Andreev et al. [1999] showed
that one does not need such extractors in order to develop an entropy-rate optimal
simulation of randomized algorithms via weak random sources. Indeed, it was not
clear whether the novel approach introduced by Andreev et al. [1999] wasnecessary
in order to have optimal simulations, or whether a more traditional approach based
on extractors was still possible. Our result clarifies this point, by showing that the
traditional approach suffices.

Perhaps more importantly, our construction is simpler to describe and analyze
than the most recent previous constructions, and it uses a very different approach.
Hopefully, our approach offers more room for improvement than previous, deeply
exploited, ones. Raz et al. [1999] have already found improvements to our con-
struction (see below). Tight results may come from some combination of our ideas
and previous ones.

Our use of results about pseudorandomness in the construction of extractors may
come as a surprise: pseudorandom generation deals with (and takes advantage of) a
computationaldefinition of randomness, while extractors are combinatorial objects
used in a framework whereinformation-theoreticrandomness is being considered.
In the past, there have been some instances of (highly nontrivial) results about com-
putational randomness inspired by (typically trivial) information-theoretic analogs,
for example, the celebrated Yao’s XOR Lemma and various kind of “direct prod-
uct” results (see e.g., Goldreich et al. [1995]). On the other hand, it seemed “clear”
that one could not go the other way, and have information-theoretic applications
of computational results. This prejudice might be one reason why the connection
discovered in this paper has been missed by the several people who worked on weak
random sources and on pseudorandomness in the past decade (including those who
did foundational work in both areas). Perhaps other important results might be
proved along similar lines.

1.6. RELATED PAPERS. The starting point of this paper was an attempt to show
that every disperser can be modified into an extractor having similar parameters.
This was inspired by the fact (noted by several people, including Andrea Clementi
and Avi Wigderson) that every hitting-set generator can be transformed into a pseu-
dorandom generator with related parameters, since the existence of hitting-set gen-
erators implies the existence of problems solvable in exponential time and having
high-circuit complexity [Andreev et al. 1998] and the existence of such problems
can be used to build pseudorandom generators [Babai et al. 1993; Impagliazzo and
Wigderson 1997]. The fact that an information-theoretic analog of this result could
be true was suggested by the work done in Andreev et al. [1999], where proof-
techniques from Andreev et al. [1998] were adapted in an information-theoretic
setting. We were indeed able to use the Impagliazzo–Wigderson generator in or-
der to show that any construction of dispersers yields a construction of extractors
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with slightly worse parameters. Oded Goldreich then pointed out that we were not
making any essential use of the disperser in our construction, and that we were
effectively proving that the Impagliazzo–Wigderson generator is an extractor (this
result is described in Section 2). The use of error-correcting codes and of the Nisan–
Wigderson generator (as in Section 3) was inspired by an alternative proof of some
of the results of Impagliazzo and Wigderson [1997] due to Sudan et al. [1999].

Shortly after the announcement of the results of this paper, Raz et al. [1999]
devised an improvement to our construction. In our construction, if the input has
min-entropyk and the output is required to be of lengthm, andε is a constant, then
the additional randomness isO(m1/ log(k/2m)(logn)2/ log(k/2m)), which is very bad
if, say, m = k/3. In Raz et al. [1999], the dependency isO((logn)2/ log(k/m)),
so the randomness is bounded byO(log2 n) even whenk = m/3. Furthermore, the
running of the extractors of Raz et al. [1999] is poly(n, t) rather than poly(n, 2t )
as in the construction presented in this paper. Raz et al. [1999] also show how to
recursively compose their construction with itself (along the lines of Wigderson and
Zuckerman [1993]) and obtain another construction wherek = m and the addi-
tional randomness isO(log3 n). Constructions of extractors with parametersk = m
have applications to the explicit construction of expander graphs [Wigderson and
Zuckerman 1993]. In particular, Raz et al. [1999] present constructions of expander
graphs and of superconcentrators that improve previous ones by Ta-Shma [1996].
Raz et al. [1999] also improve the dependency that we have between additional
randomness and error parameterε.

1.7. ORGANIZATION OF THE PAPER. We present in Section 2 our connec-
tion between pseudorandom generator constructions and extractors. The main re-
sult of Section 2 is that the Impagliazzo–Wigderson generator [Impagliazzo and
Wigderson 1997] is a good extractor. In Section 3, we describe and analyse a sim-
pler construction based on the Nisan–Wigderson generator [Nisan and Wigderson
1994] and on error-correcting codes. Section 3 might be read independently of
Section 2.

2. The Connection between Pseudorandom Generators and Extractors

This section describes our main idea of how to view a certain kind of pseudoran-
dom generator as an extractor. Our presentation is specialized on the Impagliazzo–
Wigderson generator, but results might be stated in a more general fashion.

2.1. COMPUTATIONAL INDISTINGUISHABILITY AND PSEUDORANDOM GENERA-
TORS. We start by defining the notion of computational indistinguishability, and
pseudorandom generators, due to Goldwasser and Micali [1984], Blum and Micali
[1984], and Yao [1982].

Recall that we denote byUn the uniform distribution over{0, 1}n. We say that two
random variablesX andY with the same range{0, 1}n are (S, ε)-indistinguishable
if for every T: {0, 1}n→ {0, 1} computable by a circuit of sizeS it holds

|Pr[T(X) = 1]− Pr[T(Y) = 1]| ≤ ε.
One may view the notion ofε-closeness (i.e., of statistical difference less thanε)

as the “limit” of the notion of (S, ε)-indistinguishability for unboundedS.
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Informally, a pseudorandom generator is an algorithmG : {0, 1}t → {0, 1}m
wheret¿m andG(Ut ) is (S, ε)-indistinguishable fromUm, for largeSand small
ε. For derandomization of randomized algorithms, one looks for generators, say,
G : {0, 1}O(logm) → {0, 1}m whereG(UO(logm)) is (mO(1), 1/3)-indistinguishable
from Um. Such generators (if they were uniformly computable in time
poly(m)) would imply deterministic polynomial-time simulations of randomized
polynomial-time algorithms.

2.2. CONSTRUCTIONS OFPSEUDORANDOMGENERATORSBASED ONHARD PRED-
ICATES. Given current techniques, all interesting constructions of pseudoran-
dom generators have to rely on complexity-theoretic conjectures. For example,
the Blum–Micali–Yao [Blum and Micali 1984; Yao 1982] construction (that
has different parameters from the ones exemplified above) requires the exis-
tence of strong one-way permutations. In a line of work initiated by Nisan
and Wigderson [Nisan 1991; Nisan and Wigderson 1994], there have been results
showing that the existence of hard-on-average decision problems inE is sufficient
to construct pseudorandom generators. (Recall thatE is the class of decision prob-
lems solvable deterministically in time 2O(n) wheren is the length of the input.)
Babai et al. [1993] present a construction of pseudorandom generators that only
requires the existence of decision problems inE having high worst-case complex-
ity. An improved construction of pseudorandom generators from worst-case hard
problems is due to Impagliazzo and Wigderson [1997], and it will be the main fo-
cus of this section. The constructions of Nisan and Wigderson [1994], Babai et al.
[1993], and Impagliazzo and Wigderson [1997] requirenonuniformhardness, that
is, usecircuit sizeas a complexity measure. (Recent work demonstrated that non-
trivial constructions can be based onuniformworst-case conditions [Impagliazzo
and Wigderson 1998].)

The main result of Impagliazzo and Wigderson [1997] is that if there is a decision
problem solvable in time 2O(n) that cannot be solved by circuits of size less than
2γn, for someγ > 0, thenP = BPP, that is, every randomized polynomial time
algorithm has a deterministic polynomial-time simulation. A precise statement of
the result of Impagliazzo and Wigderson follows.

THEOREM2 [IMPAGLIAZZO AND WIGDERSON1997]. Suppose that there exists
a family{Pl }l≥0 of predicates Pl: {0, 1}l → {0, 1} that is decidable in time2O(l ),and
a constantγ > 0 such that, for every sufficiently large l, Pl has circuit complexity
at least2γl .

Then, for every constantε > 0 and parameter m, there exists a pseudorandom
generator IW(m) : {0, 1}O(logm) → {0, 1}m computable in time poly(m) such that
IW(m)(UO(logm)) is (O(m), ε)-indistinguishable from the uniform distribution, and
P = BPP.

Results about pseudorandomness are typically proved by contradiction. Impagli-
azzo and Wigderson prove Theorem 2 by establishing the following result:

LEMMA 3 [IMPAGLIAZZO AND WIGDERSON1997]. For every pair of constants
ε > 0 and δ > 0, there exists a positive constant0 < α = α(ε, δ) < δ and an
algorithm that on input a length parameter l and having oracle access to a predicate
P: {0, 1}l → {0, 1} computes a function IWP: {0, 1}t → {0, 1}m in poly(m) time,
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where t= O(l ) and m= 2αl such that for every T: {0, 1}m→ {0, 1}, if

|Pr[T(IWP(Ut )) = 1]− Pr[T(Um) = 1]| > ε

then P is computed by a circuit A that uses T -gates and whose size is at most2δl .

By a “circuit with T-gates,” we mean a circuit that can use ordinary fan-in-2
AND and OR gates and fan-in-1 NOT gates, as well as a special gate (of fan-inm)
that computesT with unit cost. This is the nonuniform analog of a computation
that makes oracle access toT .

How Theorem 2 follows from Lemma 3 might not be immediately evident. The
idea is that if we have a predicateP: {0, 1}l → {0, 1} that cannot be computed by
circuits of size 22δl , thenIWP(Ut ) is (2δl , ε)-indistinguishable from uniform. This
can be proved by contradiction: ifT is computed by a circuit of size 2δl and is such
that

|Pr[T(IWP(Ut )) = 1]− Pr[T(Um) = 1]| > ε,

then there exists a circuitAof size at most 2δl that usesT-gates such thatAcomputes
P. If eachT-gate is replaced by the circuit that computesT , we end up with a circuit
of size at most 22δl that computesP, a contradiction to our initial assumption.

We stress that Lemma 3 has not been stated in this form by Impagliazzo and
Wigderson [1997]. In particular, the fact that their analysis applies to every pred-
icate P and to every functionT , regardless of their circuit-complexity, was not
explicitly stated. On the other hand, this is not a peculiar or surprising property
of the Impagliazzo–Wigderson construction: in general, in complexity theory and
in cryptography, the correctness of a transformation of an object with certain as-
sumed properties (e.g., a predicate with large circuit complexity) into an object with
other properties (e.g., a generator whose output is indistinguishable from uniform)
is proved by “black-box” reductions, that work by making “oracle access” to the
object and making no assumptions about it.

We also mention that three recent papers exploit the hidden generality of the
pseudorandom generator construction of Impagliazzo and Wigderson, and of the
earlier one by Nisan and Wigderson [1994]. Arvind and K¨obler [1997] observe
that the analysis of the Nisan–Wigderson generator extends to “nondeterministic
circuits,” which implies the existence of pseudorandom generators for nondetermin-
istic computations, under certain assumptions. Klivans and Van Melkebeek [1999]
observe similar generalizations of the Impagliazzo–Wigderson generator for ar-
bitrary nonuniform complexity measures having certain closure properties (which
does not include nondeterministic circuit size, but includes the related measure “size
of circuits having an NP-oracle”). The construction of pseudorandom generators
under uniform assumptions by Impagliazzo and Wigderson [1998] is also based on
the observation that the results of Babai et al. [1993] can be stated in a general form
where the hard predicate is given as an oracle, and the proof of security can also be
seen as the existence of an oracle machine with certain properties.

A novel aspect in our view (that is not explicit in Impagliazzo and Wigderson
[1997; 1998], Arvind and K¨obler [1997], and Klivans and van Melkeveek [1999])
is to see the Impagliazzo–Wigderson construction as an algorithm that takes two in-
puts: the truth-table of a predicate and a seed. The Impagliazzo–Wigderson analysis
says something meaningful even when the predicate is notfixed and hard(for an
appropriate complexity measure), but rathersupplied dynamicallyto the generator.
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In the rest of this section, we see that if the (truth table of the) predicate is sampled
from a weak random source of sufficiently large minentropy, then the output of
the Impagliazzo–Wigderson generator is statistically close to uniform: that is, the
Impagliazzo–Wigderson generatoris an extractor.

2.3. USING A RANDOM PREDICATEINSTEAD OF AHARD ONE. Let us introduce
the following additional piece of notation: letn = 2l , for a stringx ∈ {0, 1}n we
denote by〈x〉: {0, 1}l → {0, 1} the predicate whose truth-table isx.

LEMMA 4. Fix constantsε, δ > 0, and an integer parameter l. Consider the
function Ext: {0, 1}n × {0, 1}t → {0, 1}m defined as

Ext(x, s) = IW(m)
〈x〉 (s), (1)

where t= O(l ) = O(log n) and m= 2α(δ,ε)l = nα. Then Ext, as defined in Eq.(1)
is a (mδnδ logn+ log 1/ε,2ε)-extractor.

PROOF. We have to prove that for every random variableX of min entropy
k ≥ mδnδ logn+ log 1/ε and for everyT : {0, 1}m→ {0, 1}, we have

|Pr[T(Ext(X,Ut )) = 1]− Pr[T(Um) = 1]| ≤ 2ε. (2)

Let us fix X and T and prove that Expression (2) holds for them. Let us call
B ⊆ {0, 1}n, the set ofbadstringsx for which

|Pr[T(Ext(x,Ut )) = 1]− Pr[T(Um) = 1]| > ε. (3)

For each suchx, the analysis of Impagliazzo and Wigderson implies that there is a
circuit of size 2δl = nδ that usesT-gates and that computes〈x〉. SinceT is fixed,
and any two different predicates are computed by two different circuits, we can
conclude that the total number of elements ofB is at most the number of circuits of
sizeS= 2δl with gates of fan-in at mostm. So we have|B| ≤ 2mSlog S = 2mδnδ logn.

Since X has high min-entropy, andB is small, the probability of picking an
element ofB when sampling fromX is small, that is

Pr[X ∈ B] ≤ |B| · 2−k ≤ 2mδnδ logn · 2−(mδnδ logn+log 1/ε) = ε. (4)

Then we have

|Pr[T(Ext(X,Ut )) = 1]− Pr[T(Um) = 1]|
≤ E

x∈X
[|Pr[T(Ext(x,Ut )) = 1]− Pr[T(Um) = 1]|]

=
∑
x∈B

Pr[X = x] · |Pr[T(Ext(x,Ut )) = 1]− Pr[T(Um) = 1]|

+
∑
x 6∈B

Pr[X = x] · |Pr[T(Ext(x,Ut )) = 1]− Pr[T(Um) = 1]| ≤ 2ε,

where the first inequality is an application of the triangle inequality and the third
inequality follows from Expression (4) and the definition ofB.

If we translate the parameters in a more traditional format, we have the following
extractor construction:
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THEOREM 5. For every positive constantsγ and ε, there is aγ ′ > 0 and an
explicit construction of(k, ε)-extractor Extn: {0, 1}n × {0, 1}t → {0, 1}m, where
t = O(logn), k = nγ and m= kγ

′
.

PROOF. We proved that, for every constantε >0 andδ >0, there is a 0<α<δ
such that there is a (k, 2ε)-extractor construction wherek = O(nα+δ) = O(n2δ)
and the output length ism = nα. We can then setδ = γ/2 andγ ′ = α to get the
parameters claimed in the theorem.

This is already a very good construction of extractors, and it implies an entropy-
rate optimal simulation of randomized algorithms using weak random sources.

We mentioned in Section 2.2 that Babai et al. [1993] were the first to give a
construction of pseudorandom generators based on worst-case hard predicates. In
particular, a weaker version of Lemma 3 is proved in Babai et al. [1993], with
similar parameters except thatt = O(l 2) instead oft = O(l ). The analysis of this
section applies to the construction of Babai et al. [1993], and one can show that their
construction gives extractors with the same parameters as in Theorem 5, except that
one would havet = O((logn)2).

By deriving a more accurate estimation of the parameters in the Impagliazzo–
Wigderson construction, it would be possible to improve on the statement of
Theorem 5. More specifically, it could be possible to have an explicit dependency
of the parametert from δ andε, and an explicit expression forα(δ,γ). However,
such improved analysis would not be better than the analysis of the construction
that we present in the next section, and so we do not pursue this direction.

3. Main Result

In this section, we present a construction of extractors based on the Nisan–
Wigderson generator and error-correcting codes. The Nisan–Wigderson generator
is simpler than the Impagliazzo–Wigderson generator considered in the previous
section, and this simplicity will allow us to gain in efficiency.

The advantages of the construction of this section over the construction of the
previous section are better quantitative parameters and the possibility of giving a
self-contained and relatively simple presentation. The subsequent work of Raz et al.
[1999] took the construction of this section as a starting point, and improved the
primitives that we use.

3.1. OVERVIEW. The Nisan–Wigderson generator works similarly to the
Impagliazzo–Wigderson one: it has access to a predicate, and its output is in-
distinguishable from uniform provided that the predicate is hard (but, as will be
explained in a moment, a stronger notion of hardness is being used). This is proved
by means of a reduction that shows that ifT is a test that distinguishes the out-
put of the generator with predicateP from uniform, then there is a small circuit
with one T-gate thatapproximatelycomputesP. That is, the circuit computes
a predicate that agrees withP on a fraction of inputs noticeably bounded away
from 1/2.

Due to this analysis, we can say that the output of the Nisan–Wigderson generator
is indistinguishable from uniform provided that the predicate being used is hard to
compute approximately, as opposed to merely hard to compute exactly, as in the
case of the Impagliazzo–Wigderson generator.
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We may be tempted to define and analyse an extractorExt based on the Nisan–
Wigderson generator using exactly the same approach of the previous section.
Then, as before, we would assume for the sake of contradiction that a testT dis-
tinguishes the outputExt(X,Ut ) of the extractor from the uniform distribution, and
we would look at how many stringsx are there such that|Pr[T(Ext(x,Ut )) =
1] − Pr[T(Um) = 1]| can be large. For each suchx, we can say that there is a
circuit of sizeS that describes a stringwhose Hamming distance from xis notice-
ably less than 1/2. Since there are about 2S such circuits, the total number of bad
stringsx is at most 2S times the number of strings that can belong to a Hamming
sphere of radius about 1/2. If X is sampled from a distribution whose min-entropy
is much bigger than the logarithm of the number of possible badx, then we reach a
contradiction to the assumption thatT was distinguishingExt(X,Ut ) from uniform.
When this calculation is done with the actual parameters of the Nisan–Wigderson
generator, the result is very bad, because the number of strings that belong to a
Hamming sphere of the proper radius is huge. This is, however, theonly point
where the approach of the previous section breaks down.

Our solution is to useerror-correcting codes, specifically, codes with the prop-
erty that every Hamming sphere of a certain radius contains a small number of
codewords. We then define an extractorExt that on inputx ands first encodesx
using the error-correcting code, and then applies the Nisan–Wigderson generator
usings as a seed and the encoding ofx as the truth table of the predicate. Thanks
to the property of the error-correcting code, the counting argument of the previous
section works well again.

3.2. PRELIMINARIES. In this section, we state some known technical results that
will be used in the analysis of our extractor. For an integern, we denote by [n] the
set{1, . . . ,n}. We denote byu1u2 the string obtained by concatenating the strings
u1 andu2.

3.2.1. Error-Correcting Codes. Error-correcting codes are one of the basic
primitives in our construction. We need the existence of codes such that few code-
words belong to any given Hamming ball of sufficiently small radius.

LEMMA 6 (ERRORCORRECTINGCODES). For every n and δ, there is a
polynomial-time computable encoding EC: {0, 1}n → {0, 1}n̄, wheren̄ = ploy(n,
1/δ) such that every ball of Hamming radius(1/2− δ)n̄ in {0, 1}n̄ contains at most
1/δ2 codewords. Furthermore, n̄ can be assumed to be a power of2.

Stronger parameters are achievable. In particular, the length of the encoding
can ben̄ = npoly(1/δ). However, the stronger bounds would not improve our
constructions. Standard codes are good enough to prove Lemma 6. We sketch a
proof of the lemma in the Appendix.

3.2.2. Designs and the Nisan–Wigderson Generator.In this section, we cite
some results from Nisan and Wigderson [1994] in a form that is convenient for our
application. Since the statements of the results in this section are slightly different
from the corresponding statements in Nisan and Wigderson [1994], we also present
full proofs.

Definition 7 (Design) . For positive integersm, l , a≤ l , andt ≥ l , a (m, t, l ,a)
design is a familyS = S1, . . . , Sm of sets such that
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—Si ⊆ [t ],
—|Si | = l ,
—for everyi 6= j ∈ [m], |Si ∩ Sj | ≤ a.

LEMMA 8 (CONSTRUCTION OFDESIGN[NISAN AND WIGDERSON1994]). For
every positive integers m, l , and a ≤ l , there exists a(m, t, l ,a) design where
t = exp((ln m/a)+ 1) · l 2/a. Such a design can be computed deterministically in
O(2tm) time.

The deterministic construction in Lemma 8 was presented in Nisan and
Wigderson [1994] for the special case ofa = logm. The case for generala can be
proved by using the same proof, but a little care is required while doing a certain
probabilistic argument. The proof of Lemma 8 is given in the Appendix.

The following notation will be useful in the next definition: ifS ⊆ [t ], with
S= {s1, . . . , sl } (wheres1< s2< · · · < sl ) andy ∈ {0, 1}t , then we denote byy|S ∈
{0, 1}l the stringys1 ys2 · · · ysl .

Definition 9 (NW Generator[Nisan and Wigderson1994]). For a function f:
{0, 1}l → {0, 1} and an (m, t, l ,a)-designS = (S1, . . . , Sm), the Nisan–Wigderson
generatorNWf,S : {0, 1}t → {0, 1}m is defined as

NWf,S(y) = f
(
y|S1

) · · · f
(
y|Sm

)
Intuitively, if f is a hard-on-average function, thenf (·) evaluated on a random point
x is an “unpredictable bit” that, to a bounded adversary, “looks like” a random bit.
The basic idea in the Nisan–Wigderson generator is to evaluatef (·) at several
points, thus generating several unpredictable output bits. In order to have a short
seed, evaluation points are not chosen independently, but rather in such a way that
any two points have “low correlation.” This is where the definition of design is
useful: the random seedy for the generator associates a truly random bit to any
element of the universe [t ] of the design. Then, thei th evaluation point is chosen
as the subset of the bits ofy corresponding to setSi in the design. Then, the
“correlation” between thei th and thej th evaluation point is given by the≤ a bits
that are inSi ∩ Sj . It remains to be seen that the evaluation off at several points
having low correlation looks like a sequence of random bits to a bounded adversary.
This is proved in Nisan and Wigderson [1994, Lemma 2.4], and we state the result
in a slightly different form in Lemma 10 below.

For two functionsf, g : {0, 1}l → {0, 1} and a number 0≤ ρ ≤ 1 we say thatg
approximates fwithin a factorρ if f andg agree on at least a fractionρ of their
domain, that is,Prx[ f (x) = g(x)] ≥ ρ.

LEMMA 10 (ANALYSIS OF THE NW GENERATOR [NISAN AND WIGDERSON
1994]). LetS be an(m, l ,a)-design, and T : {0, 1}m→{0, 1}. Then there exists
a familyGT (depending on T andS) of at most2m2a+logm+2 functions such that for
every function f: {0, 1}l → {0, 1} satisfying∣∣∣ Pr

y∈{0,1}t
[T(NWf,S(y)) = 1]− Pr

r∈{0,1}m
[T(r ) = 1]

∣∣∣ ≥ ε.
there exists a function g: {0, 1}l→{0, 1}, g ∈ GT , such that g(·) approximates f(·)
within 1/2+ ε/m.
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PROOFOF LEMMA 10. We follow the proof of Lemma 2.4 in Nisan and
Wigderson [1994]. The main idea is that ifT distinguishesNWf,S(·) from the
uniform distribution, then we can find a bit of the output where this distinction
is noticeable.

In order to find the “right bit,” we will use the so-calledhybrid argumentof
Goldwasser and Micali [1984]. We definem+ 1 distributionsD0, . . . , Dm; Di is
defined as follows: sample a stringv = NWf,S(y) for a randomy, and then sample
a stringr ∈ {0, 1}m according to the uniform distribution, then concatenate the first
i bits ofv with the lastm− i bits ofr . By definition,Dm is distributed asNWf,S(y)
andD0 is the uniform distribution over{0, 1}m.

Using the hypothesis of the lemma, we know that there is a bitb0 ∈ {0, 1} such
that

Pr
y

[T ′(NWf,S(y)) = 1]− Pr
r

[T ′(r )] > ε,

whereT ′(x) = b0⊕ T(x).
We then observe that

ε ≤ Pr
y

[T ′(NWf,S(y)) = 1]− Pr
r

[T ′(r )]

= Pr[T ′(Dm) = 1]− Pr[T ′(D0) = 1]

=
m∑

i=1

(Pr[T ′(Di ) = 1]− Pr[T ′(Di−1) = 1]).

In particular, there exists an indexi such that

Pr[T ′(Di ) = 1]− Pr[T ′(Di+1) = 1] ≥ ε

m
. (5)

Now, recall that

Di−1 = f
(
y|S1

) · · · f
(
y|Si−1

)
ri r i+1 · rm

and

Di = f
(
y|S1

) · · · f
(
y|Si−1

)
f
(
y|Si

)
ri+1 · rm.

We can assume without loss of generality (up to a renaming of the indices) that
Si ={1, . . . , l }. Then, we can seey ∈ {0, 1}t as a pair (x, z) wherex = y|Si

∈
{0, 1}l and z= y[t ]−S|i ∈ {0, 1}t−l . For every j < i and y= (x, z), let us define
h j (x, z)= y|Sj

: note thath j (x, z) depends on|Si ∩ Sj | ≤ a bits of x and on
l − |Si ∩ Sj | ≥ l − a bits of z.

Using this notation (and observing that for a 0/1 random variable the probability
that the random variable is 1 is equal to the expectation of the random variable),
we can rewrite Expression (5) as

E
ri ,...,rm,x,z

[T ′( f (h1(x, z)), f (h2(x, z)), . . . , f (hi−1(x, z)), f (x), . . . , rm)]

− E
ri ,...,rm,x,z

[T ′( f (h1(x, z)), f (h2(x, z)), . . . , f (hi−1(x, z)), ri , . . . , rm)]

= E
ri ,...,rm,x,z

[T ′( f (h1(x, z)), f (h2(x, z)), . . . , f (hi−1(x, z)), f (x), . . . , rm)

− T ′( f (h1(x, z)), f (h2(x, z)), . . . , f (hi−1(x, z)), ri , . . . , rm)] ≥ ε

m
.
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We can use an averaging argument to claim that we can fixri+1, . . . , rm to some
valuesci+1, . . . , cm, as well as fixz to some valuew, and still have

E
ri ,x

[T ′( f (h1(x,w)), f (h2(x,w)), . . . , f (hi−1(x,w)), f (x), ci+1, . . . , cm)

− T ′( f (h1(x,w)), f (h2(x,w)), . . . , f (hi−1(x,w)), ri , ci+1, . . . , cm)]≥ ε

m
(6)

Let us now consider a new functionF: {0, 1}l+1→ {0, 1}m defined asF(x, b) =
f (h1(x,w)), f (h2(x,w)), . . . , f (hi−1(x,w)), b, ci+1, . . . , cm. UsingF , renaming
ri asb, and moving back to probability notation, we can rewrite Expression (6) as

Pr
x,b

[T ′(F(x, f (x))) = 1]− Pr
x,b

[T ′(F(x, b)) = 1] >
ε

m

That is, usingT ′ and F it is possible to distinguish a pair of the form (x, f (x))
from a uniform string of lengthl + 1. We now see that, givenF(·) andT ′(·), it is
possible to describe a functiong(·) that agrees withf (·) on a fraction 1/2+ ε/m
of the domain.

Consider the following approach: on inputx, pick a randomb ∈ {0, 1}, and
computeT ′(F(x, b)). If T ′(F(x, b)) = 1, then output b; otherwise, output 1− b.
Let us callgb(x) the function performing the above computation, and let us estimate
the agreement betweenf (·) andgb(·), averaged over the choice ofb.

Pr
b,x

[gb(x) = f (x)]

= Pr
b,x

[gb(x) = f (x)|b = f (x)] Pr
b,x

[b = f (x)]

+Pr
b,x

[gb(x) = f (x)|b 6= f (x)] Pr
b,x

[b 6= f (x)]

= 1

2
Pr
b,x

[T ′(F(x, b)) = 1| f (x) = b] + 1

2
Pr
b,x

[T ′(F(x, b)) = 0| f (x) 6= b]

= 1

2
+ 1

2

(
Pr
b,x

[T ′(F(x, b)) = 1| f (x) = b] − Pr
b,x

[T ′(F(x, b)) = 1| f (x) 6= b]

)
= 1

2
+ Pr

x,b
[T ′(F(x, f (x))) = 1]− Pr

x,b
[T ′(F(x, b)) = 1]

≥ 1

2
+ ε

m
.

Over the choices ofx andb, the probability that we guessf (x) is≥ 1/2+ ε/m,
hence there is a bitb1 ∈ {0, 1} such thatgb1 approximatesf to within 1/2+ ε/m.
OnceT andF are given, we can specifygb1 using two bits of information (the bit
b1, plus the bitb0 such thatT ′(·)= b0⊕ T(·)).

We now observe thatF can be totally described by using no more than logm+
(i − 1)2a + (m− i ) < logm+m2a bits of information. Indeed, we use logm bits
to specifyi , then for everyj < i and for everyx we have to specifyf (h j (x,w)).
Sinceh j (x,w) only depends on the bits ofx indexed bySi ∩ Sj , we just have to
specify 2a values of f for each suchj . For j > i , we have to specifycj .

Overall, we have a functiong(·) that approximatesf to within 1/2+ ε/m
and that, givenT , can be described using 2+ logm + m2a bits. We defineGT
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as containing all functionsg(·) that can be defined in this way, over all pos-
sible description.

3.3. CONSTRUCTION. The construction has parametersn,k ≤ n, 36≤ m≤ k/2
and 0<ε<2−k/12. It can be verified that the constraints on the parameters imply
that 2+ 3 logm+ 3 log(1/ε) < k/2 (because we havek/4> 3 log 1/ε andk/4≥
m/2≥ 2+ 3 logm for m≥ 36).

Let EC : {0, 1}n → {0, 1}n̄ be as in Lemma 6, withδ = ε/m, so thatn̄ =
poly(n, 1/ε), and definel = log n̄ = O(logn/ε).

For an elementu ∈ {0, 1}n, defineū = 〈EC(u)〉 : {0, 1}l → {0, 1}. Let S =
S1, . . . , Sm be as in Lemma 8, such that

—Si ⊆ [t ],
—|Si | = l ,
—|Si ∩ Sj | ≤ a = log(k/2m), and

—t = O(exp(lnm/log(k/2m)) · l 2/log(k/2m)).

By our choice of parameters, and by choosingc appropriately, we have that
m> t .

Then, we defineExt: {0, 1}n × {0, 1}t → {0, 1}m as

Ext(u, y) = NWū,S(y) = ū
(
yS1

) · · · ū(ySm

)
. (7)

3.4. ANALYSIS

LEMMA 11 Let Ext be as in Eq.(7). For every fixed predicate T: {0, 1}m →
{0, 1}, there are at most22+m2a · (m3/ε2) strings u∈ {0, 1}n such that

|Pr[T(Ext(u,Ut )) = 1]− Pr[T(Um) = 1]| ≥ ε. (8)

PROOF. It follows from the definition ofExt and from Lemma 10 that ifu
is such that (8) holds, then there exists a functiong : {0, 1}l → {0, 1}m in GT
and a bitb ∈ {0, 1} such that the functionb⊕ T(g(·)) approximates̄u(·) within
1/2+ ε/m= 1/2+ δ.

There are at most 22+logm+m2a
functionsg ∈ GT . Furthermore, each such function

can be within relative distance 1/2−ε/m from at most (m/ε)2 functionsū(·) coming
from the error correcting code of Lemma 6.

We conclude that 22+2 log(m/ε)+logm+m2a
is an upper bound on the number of strings

u for which Expression (8) can occur.

THEOREM 12 Ext as defined in Eq.(7) is a (k, 2ε)-extractor.

PROOF. We first note that, by our choice of parameters, we havem2a= k/2.
Also, k/2> 2+ 3 log(m/ε).

Now, fix a predicateT: {0, 1}m→ {0, 1}. From Lemma 11, the probability that
sampling au from a sourceX of min-entropyk, we have

|Pr[T(Ext(u,Ut )) = 1]− Pr
r

[T(Um) = 1]| ≥ ε

is at most 22+m2a+3 logm+2 log(1/ε) · 2−k, which is, at most,ε by our choice of param-
eters. A Markov argument shows that

|Pr[T(Ext(X,Ut )) = 1]−Pr[T(Um) = 1]| ≤ 2ε. h
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Theorem 1 now follows from Theorem 12 and by the choice of parameters in the
previous section.

Appendix

A.1 A Discussion on Lemma6

It is a standard result that, if an error-correcting code has large minimum distance,
then there can be few codewords in every large ball. In particular, the following
bound holds:

LEMMA 13 Suppose C is an error-correcting code with(relative) minimum
distance≥ 1/2− β/2. Then every Hamming ball of(relative) radius 1/2− √β
contains at most1/3β codewords.

A proof can be found for example, in Bellare et al. [1998, Lemma A.1]. The
following result is well known, even if we do not know of a source where it is
clearly stated in this way.

LEMMA 14 For everyδ and n there exists an error-correcting code with2n

codewords of length̄n = poly(n, 1/δ) and with minimum distance(1/2− δ)n̄. The
code admits a polynomial-time encoding algorithm.

Several constructions meet this requirement. In particular, one can use a Reed–
Solomon code concatenated with a Hadamard code. See, for example, MacWilliams
and Sloane [1977] for a treatment of error correcting codes. Lemma 6 follows from
Lemmas 13 and 14.

A.2 Proof of Lemma8

The following version of the Chernoff bound will be used (this is Lemma 1.7 in
Leighton [1992]).

LEMMA 15 Let X1, . . . , Xn be 0/1 mutually independent random variables
such thatE[

∑
i Xi ] = µ. Then, for everyα > 1, it holds

Pr
[∑

i

Xi ≥ αµ
]
≤ exp

(
−
(

(lnα)+ 1

α
− 1

)
αµ

)
We can now give the proof of Lemma 8. The proof is essentially the same as in
Nisan and Wigderson [1994], and uses some improvements appeared in Raz et al.
[1999], in particular, the use of a particularly clean probabilistic argument, that is
credited to Zuckerman in Raz et al. [1999].

We view the set [t ] as made byl intervals, each of sizet/ l . We call a subset
S⊆ [t ] structuredif it contains exactly one element in each interval.

We consider an algorithm that sequentially choosesm structured subsets of [t ]
such that, at any step, the chosen subset has intersections of size less thana with
all the previously chosen subsets.

In order to prove that at each step it is possible to choose a new subset with the
required properties, we use a probabilistic argument.



Extractors and Pseudorandom Generators 877

LEMMA 16 Let S1, . . . , Sk with k< m be a collection of structured subsets of
[t ],where t= l 2

a ·exp((lnm)/a). Then there exists a structured subset S⊆ [t ] such
that |S| = l and |Si ∩ S| ≤ a for i = 1, . . . , k.

PROOF. We chooseSrandomly among structured sets, that is, for every interval
we pick an element at random and we put it intoS. Now we claim that for every
i , Pr[|S∩ Si | > a] ≤ 1/m. Indeed, the random variable|S∩ Si | can be seen as
the sum ofl independent 0/1 random variables, one for every interval (the random
variable being 1 iffS andSi share an element in the corresponding interval). For
each of these random variables, the average is precisely the inverse of the length of
the interval, that isl/t . It follows that the average of|S∩ Si | isµ = l 2/t .

Using the Chernoff bound, we have

Pr[|S∩ Si | > a] ≤ exp
(
−a
((

ln
a

µ

)
+ a

µ
− 1

))
< exp

(
−a
((

ln
a

µ

)
− 1

))
and since we havea/µ = at/ l 2 = exp(1+ (ln m)/a), the expression above is
equal to

exp

(
−a

((
1+ (ln m)

a

)
− 1

))
= 1

m

Using a union bound, we can now conclude that

Pr[∃i ∈ {1, . . . , k}.|S∩ Si | > a] ≤ k

m
< 1

and so there exists a structured setS having small intersections with each of
theSi .

A setSsatisfying the statement of the above lemma can be found in poly(2t ,m)
time usingO(m+ t) space, just by trying all possible structured subsets.
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