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ABSTRACT
In his influential 1947 paper that inaugurated the probabilis-
tic method, Erdős proved the existence of 2 logn-Ramsey
graphs on n vertices. Matching Erdős’ result with a construc-
tive proof is considered a central problem in combinatorics,
that has gained a significant attention in the literature. The
state of the art result was obtained in the celebrated paper
by Barak, Rao, Shaltiel, and Wigderson who constructed a

22(log logn)1−α
-Ramsey graph, for some small universal con-

stant α > 0.
In this work, we significantly improve this result and con-

struct 2(log logn)c -Ramsey graphs, for some universal con-
stant c. In the language of theoretical computer science,
this resolves the problem of explicitly constructing dispersers
for two n-bit sources with entropy polylog(n). In fact, our
disperser is a zero-error disperser that outputs a constant
fraction of the entropy. Prior to this work, such dispersers
could only support entropy Ω(n).

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Theory

Keywords
Ramsey graphs, explicit constructions, zero-error dispersers

1. INTRODUCTION
Ramsey theory is a branch of combinatorics that studies

the unavoidable presence of local structure in globally un-
structured objects. In the paper that pioneered this field of
study, Ramsey [Ram28] considered an instantiation of this
phenomena in graph theory.

Definition 1. A graph on n vertices is called k-Ramsey if
it contains no clique or independent set of size k.
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Ramsey showed that there does not exist a graph on n
vertices that is log(n)/2-Ramsey. In his influential paper that
inaugurated the probabilistic method, Erdős [Erd47] comple-
mented Ramsey’s result and showed that most graphs on n
vertices are 2 logn-Ramsey. Unfortunately, Erdős’ argument
is non-constructive and one does not obtain from Erdős’ proof
an example of a graph that is 2 logn-Ramsey. Erdős offered
a $100 prize for matching his result, up to any multiplicative
constant factor, by a constructive proof. That is, coming up
with an explicit construction of an O(logn)-Ramsey graph.
Erdős’ challenge gained a significant attention in the liter-
ature [Abb72, Nag75, Fra77, Chu81, FW81, Nao92, Alo98,
Gro01, PR04, Bar06, BKS+10, BRSW12]. Other works stud-
ied the difficulty of constructing Ramsey graphs [Gop14]
and suggested routes towards constructing improved Ramsey
graphs [GKRTS05].

The notion of explicitness was formalized in the compu-
tational era. While, classically, a succinct mathematical
formula was widely considered to be an explicit description,
complexity theory suggests a more relaxed, and arguably
more natural interpretation of explicitness. An object is
deemed explicit if one can efficiently construct that object
from scratch. More specifically, a graph on n vertices is
explicit if given the labels of any two vertices u, v, one can
efficiently determine whether there is an edge connecting
u, v in the graph. Since the description length of u, v is
2 logn bits, quantitatively, by efficient we require that the
running-time is polylog(n).

Ramsey graphs have an analogous definition for bipartite
graphs. A bipartite graph on two sets of n vertices is bipar-
tite k-Ramsey if it has no k× k complete or empty bipartite
subgraph. One can show that a bipartite Ramsey graph
induces a Ramsey graph with comparable parameters. Thus,
constructing bipartite Ramsey-graphs is at least as hard as
constructing Ramsey graphs, and it was believed to be a
strictly harder problem. Nevertheless, the best known con-
struction of Ramsey graphs is in fact bipartite. Furthermore,
Erdős’ argument holds as is for bipartite graphs.

In their celebrated paper, Barak et al. [BRSW12] gave
an explicit construction of a bipartite k(n)-Ramsey graph on

n vertices with k(n) = 22(log logn)1−α
, where α > 0 is some

small universal constant. In particular, k(n) = 2o(logn) is
sub-exponential in the desired value, namely, in 2 logn. In
this paper we give an explicit construction of a bipartite
k(n)-Ramsey graph with k(n) that is pseudo-polynomial in
the desired value. 1

1A function f : N → N is pseudo-polynomial if there exist
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Theorem 1. There exists an explicit bipartite 2(log logn)c -
Ramsey graph on n vertices, where c is some universal con-
stant.

1.1 Two-Source Zero-Error Dispersers
In the language of theoretical computer science, Theorem 1

translates to a disperser for two independent n-bit sources
with entropy O(logc n). We first recall some basic definitions.

Definition 2. The min-entropy of a random variable X is
defined by H∞(X) = minx∈sup(X)− log2 (Pr[X = x]). If X
is supported on {0, 1}n, we define the min-entropy rate of X
by H∞(X)/n. In such case, if X has min-entropy k or more,
we say that X is an (n, k)-source.

Definition 3. A function Disp : {0, 1}n×{0, 1}n → {0, 1}m
is called a two-source zero-error disperser for entropy k if
for any two independent (n, k)-sources X,Y , it holds that
sup(Disp(X,Y )) = {0, 1}m.

Note that a two-source zero-error disperser for entropy
k, with a single output bit, is equivalent to a bipartite 2k-
Ramsey graph on 2n vertices on each side. Constructing two-
source dispersers for polylogarithmic entropy is considered
a central problem in pseudorandomness, that we resolve
in this paper. Indeed, a 2poly(log logn)-Ramsey graph on n
vertices is equivalent to a disperser for entropy polylog(n).
From the point of view of dispersers, it is easier to see how
challenging is Erdős’ goal of constructing O(logn)-Ramsey
graphs. Indeed, these are equivalent to dispersers for entropy
log(n) + O(1). Even a disperser for entropy O(logn) does
not meet Erdős’ goal as it translates to a polylog(n)-Ramsey
graph.

While Theorem 1 already yields a two-source zero-error
disperser for polylogarithmic entropy, it is desired to con-
struct dispersers with many output bits. Our construction
has this property.

Theorem 2. There exists an explicit two-source zero-error
disperser for n-bit sources having entropy k = polylog(n),
with m = Ω(k) output bits.

Theorem 2 gives an explicit zero-error disperser for polylog-
arithmic entropy with many output bits. Prior to this work,
the state of the art zero-error disperser with a super constant
number of output bits, due to Gabizon and Shaltiel [GS08],
required entropy k = Ω(n). In fact, partially motivated by
applications to data structures [FN93], in [GS08] a stronger
variant of a two-source zero-error disperser was constructed,
in which every element in the range is obtained with proba-
bility at least δ = δ(n). Our construction has this property
as well.

1.2 Implicit O(1) Probe Search
In this section we describe an application of our construc-

tion to data structures. In the probe search problem one
wants to store a set S ⊆ {0, 1}n of size |S| = 2k in an ordered
table T of the same size, where every entry in T contains
exactly one element of S. We say that T supports q queries
if given x ∈ {0, 1}n one can determine whether x ∈ S by
probing q entries of T . Note that the only freedom one has
when designing T is the order in which the elements of S are
placed.

constants c,m0 such that f(m) ≤ 2(logm)c for all m > m0.

Regardless of the value of n, one can always store S in
a table T according to a predetermined order of {0, 1}n so
to support q = k queries. Following Yao [Yao81] and Fiat
and Naor [FN93], the regime of parameters we consider only
allows for constant q, independent of n, k. In [Yao81, FN93]
it was shown that for supporting constant q, k must be a
fast enough growing function of n. On the positive side, Fiat
and Naor [FN93] showed how to construct tables supporting
constant q for k = δn, for any constant δ > 0. This result
was later improved by Gabizon and Shaltiel [GS08] to k = nδ

for any constant δ > 0, while maintaining constant query
complexity.

Fiat and Naor [FN93] reduced the probe search problem to
the design of a combinatorial object they called a “rainbow”.
This object can be constructed given a certain kind of dis-
persers. In particular, the output length of the disperser must
be large. Although we do not delve to the details in this pro-
ceeding version, we remark that our dispersers are sufficient
for this reduction to go through, and by building on [FN93,
GS08] we improve previous results to k = polylog(n) while
maintaining constant query complexity.

We remark that, by inspection, one can show that this
improvement also follows by using a recent construction of
multi-source extractors [Li15b]. Though, as these extractors
require more than two sources, the obtained query complexity
is slightly larger.

1.3 Subsequent Work
In an exciting subsequent work, Chattopadhyay and Zuck-

erman [CZ15] gave a construction of a two-source extractor
for polylog(n)-entropy based on a very different set of ideas

than ours. The error of their extractor is n−Ω(1) and the
number of output bits is 1. The latter was improved soon af-
ter by Li [Li15a] using similar techniques, with the same error
parameter. As extractors with one output bit yields Ramsey
graphs, the work of [CZ15] gives a second, very different,
construction of Ramsey graphs matching our parameters.

2. OVERVIEW OF THE CONSTRUCTION
AND ANALYSIS

In this section we present our disperser and give a fairly
comprehensive overview of the proof, though we allow our-
selves to be somewhat imprecise whenever this makes the
exposition clearer. The formal proof can be found in the full
version of this paper. We start by recalling the definition of a
subsource. For ease of presentation we consider a somewhat
relaxed definition. From this point on an (n, k)-source will
refer to a random variable X that is uniformly distributed
over some subset SX ⊂ {0, 1}n with size at least 2k. A lemma
by Chor and Goldreich [CG88] implies that, essentially, this
assumption can be made without loss of generality. We say
that a source X ′ is a subsource of X, and write X ′ ⊂ X, if
SX′ ⊆ SX . Further, the deficiency of X ′ in X is defined by
log(|SX′ |/|SX |).

Another notion we need is that of a block-source. For an
even integer n, given an n-bit string x, we denote by left(x)
and by right(x) the n/2-bit prefix and n/2-bit suffix of x,
respectively. A random variable X is called a k-block-source
if left(X) has min-entropy k. Furthermore, conditioned on
any fixing of left(X) it holds that right(X) has min-entropy k.
Following a long line of research, Li [Li15b] gave an explicit
construction of an extractor for a block-source and a source
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with polylogarithmic entropy. More precisely, Li designed
an efficiently computable function BExt : {0, 1}n × {0, 1}n →
{0, 1}m with the following property. For any k-block-source
X and an independent (n, k)-source Y , with k ≥ log12 n,

BExt(X,Y ) ≈ε Um, where m = 0.9k and ε = 2−k
Ω(1)

.

2.1 Entropy-Trees and Tree-Structured Sources
For the purpose of constructing a disperser it suffices to

construct a disperser for subsources of the original sources.
In this section we show that any source has a low-deficiency
subsource that has a “nice” structure. Thus, it suffices to
construct our disperser only for these nice sources.

Entropy-trees
An entropy-tree is a complete rooted binary tree T , where
some of its nodes are labeled by one of the following labels:
H,B,F, which stand for high entropy, block-source, and fixed,
respectively. The nodes of an entropy-tree are labeled ac-
cording to rules that capture any possible entropy structure
of a source. The rules are:

𝐻

𝐹 𝐻

𝐹 𝐻

𝐻

𝐵𝐹

Figure 1: An example of an entropy-tree. Unlabeled
nodes and edges to them are omitted.

• The root of T , denoted by root(T ), is labeled by either
H or B.

• There is exactly one node in T , denoted by vB(T ), that
is labeled by B.

• If v is a non-leaf that has no label, or otherwise labeled
by F or B, then its sons have no label.

• If v is a non-leaf that is labeled by H then the sons of
v can only be labeled according to the following rules:

– If leftSon(v) is labeled by F then rightSon(v) is
labeled by either H or B.

– If leftSon(v) is labeled by H or B then rightSon(v)
has no label.

With every entropy-tree T , we associate a path that we
call the entropy-path of T . This is the unique path from
root(T ) to vB(T ). We say that a path in T contains the
entropy-path if it starts at root(T ) and goes through vB(T ).
Note that we allow an entropy-tree to have nodes that are
descendants of vB(T ). We just do not allow these nodes to
have labels.

Tree-structured sources
Now that we have defined entropy-trees, we can say what
does it mean for a source to have a T -structure, for some
entropy-tree T . To this end we need to introduce some
notations. Let n be an integer that is a power of 2. With
a string x ∈ {0, 1}n, we associate a depth logn complete

rooted binary tree, where with each node v of T we associate
a substring xv of x in the following natural way: xroot(T ) = x;
and for v 6= root(T ), if v is the left son of its parent, then
xv = left(xparent(v)); otherwise, xv = right(xparent(v)).

Let T be a depth log n entropy-tree. An n-bit source X is
said to have a T -structure with parameter k if for any node
v in T the following holds. If v is labeled by F then Xv is
fixed; If v is labeled by H then H∞(Xv) ≥ k; Otherwise, if v

is labeled by B then Xv is a
√
k-block-source. One can prove

that any (n, k)-source X, with k = Ω(log2 n), has a deficiency
2 logn subsource that has a tree-structure with parameter
Ω(k). Thus, for the purpose of constructing dispersers, we
may assume that we are given two independent samples from
tree-structured sources rather than from general sources.

The challenge-response mechanism
The challenge-response mechanism was introduced in [BKS+10]
and was further developed by [BRSW12]. Roughly speaking,
this is a mechanism that allows one to distinguish between
the case that a random variable is fixed from the case that
it has a sufficient amount of entropy. We now present the
mechanism.

For integers ` < n, the challenge-response mechanism is a
poly(n)-time computable function Resp : {0, 1}n × {0, 1}n ×
{0, 1}` → {fixed, hasEntropy} with the following property.
For any two independent (n,polylog(n))-sources X,Y , and
for any function Ch : {0, 1}n×{0, 1}n → {0, 1}`, the following
holds:

• If Ch(X,Y ) is fixed to a constant then there exist
deficiency ` subsources X ′ ⊂ X, Y ′ ⊂ Y , such that
Pr(x,y)∼(X′,Y ′) [Resp(x, y,Ch(x, y)) = fixed] = 1.

• If for any deficiency ` subsources X̂ ⊂ X, Ŷ ⊂ Y it
holds that H∞(Ch(X̂, Ŷ )) ≥ k, then

Pr
(x,y)∼(X,Y )

[Resp(x, y,Ch(x, y)) = hasEntropy] ≥ 1−2−k.

2.2 Identifying the Entropy-Path
Tree-structured sources certainly seem nicer to work with

than general sources. However, it is still not clear what
good is this structure for if we do not have any information
regarding the entropy-tree, and in particular regarding the
entropy-path. Remarkably, Barak et al. [BRSW12] were
able to identify the entropy-path of the entropy-tree T given
just one sample from x ∼ X, where X is a T -structured
source, and one sample from y ∼ Y , where Y is a general
source that is independent of X. We now turn to describe the
algorithm used by [BRSW12]. Before doing so, we remark
that Barak et al. proved something somewhat different.
Indeed, they considered a variant of entropy-trees and had
to prove something somewhat different than what we need.
In particular, their algorithm did not identify the entropy-
path per se. Nevertheless, their proof can be adapted in a
straightforward manner to obtain the result we need.

What does it mean to identify the entropy-path?
What do we mean by saying that an algorithm identifies the
entropy-path of an entropy-tree T? This is an algorithm
that on input x, y ∈ {0, 1}n, outputs a depth logn rooted
complete binary tree and a marked root-to-leaf path on
that tree, denoted by pobs(x, y) – the observed entropy-path.
Ideally, the guarantee of the algorithm would have been
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the following: If x is sampled from a T -structured source
X and y is sampled independently from a source Y , then
pobs(x, y) contains the entropy-path of T with probability 1
over (x, y) ∼ (X,Y ). That is, for any (x, y) ∈ sup((X,Y )), if
we draw the computed path pobs(x, y) on the entropy-tree T
then this path starts at root(T ) and goes through vB(T ).

Note that the path pobs(x, y) is allowed to continue arbi-
trarily after visiting vB(T ). Asking that pobs(x, y) will stop
exactly at vB(T ) is a very strong requirement. In particular,
it will conclude the construction of the disperser. Indeed,
once the block-source XvB(T ) is found, one can simply output
BExt(XvB(T ), Y ).

This was an ideal version of what we mean by identifying
an entropy-path. For our needs, we will be satisfied with a
weaker guarantee. Following [BRSW12], we will show that
there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such
that with high probability over (x, y) ∼ (X ′, Y ′) it holds that
pobs(x, y) contains the entropy-path of T .

The fact that we only have a guarantee on low-deficiency
subsources is good enough for us as we are aiming for a
disperser. The fact that there is an error (that did not
appear in the analysis of [BRSW12]) should be handled with
some care. Indeed, note that by moving to a deficiency d
subsource, an ε error in the original source can grow to at
most 2d ·ε restricted to the subsource. We will make sure that
the error is negligible compared to the deficiency we consider
in the rest of the analysis. Thus, from here on we will forget
about the error introduced in this step of identifying the
entropy-path.

The algorithm of [BRSW12] for identifying the entropy-
path
We now describe the algorithm used by [BRSW12] for iden-
tifying the entropy-path of an entropy-tree T . Note that if
root(T ) = vB(T ) then any observed entropy-path will contain
vB(T ). So, we may assume that this is not the case. Let
v be the parent of vB(T ) in T . As a first step, we want to
determine which of the two sons of v is vB(T ). To this end,
node v declares that its left son is vB(T ) if and only if

Resp
(
xv, y,BExt

(
xleftSon(v), y

))
= hasEntropy. (1)

Lets pause for a moment to introduce some notations. If
Equation (1) holds, we say that node v (x, y)-favors its
left-son; otherwise, we say that v (x, y)-favors its right son.
Moreover, we define the good son of v to be vB(T ). More
generally, for a node u 6= vB(T ) that is an ancestor of vB(T ),
we define the good son of u to be its unique son that is an
ancestor of vB(T ). Note that by following the good sons from
root(T ) to vB(T ) one recovers the entropy-path of T . Thus,
one correctly identifies the entropy-path of T on input x, y if
and only if any ancestor of vB(T ) on the entropy-path of T
(x, y)-favors its good son.

One can show that if XleftSon(v) is fixed then Equation (1)
holds with probability 0 on some low-deficiency subsources
of X,Y . Further, by the challenge-response mechanism,
one can show that if leftSon(v) = vB(T ) then with high
probability over (X,Y ), Equation (1) holds. Observe that
by the definition of an entropy-tree, these are the only two
possible cases.

We showed how vB(T ) can convince its parent v that it is
its good son. The trick was to use the block-source-ness of
XvB(T ) so to generate a proper challenge. Considering one
step further, we ask the following: If u is the parent of v,

how can v convince u that it is its good son? After all, v
is not a block-source. The elegant solution of Barak et al.
is as follows. Given x, y ∈ {0, 1}n, the challenge of v will
contain not only BExt(xv, y) but also BExt(xw, y), where w
is v’s (x, y)-favored son. Thus, if v’s favored son happens
to be its good son vB(T ), the challenge posed by v will not
be responded by u. More generally, a node v decides which
of its two sons it (x, y)-favors not according to Equation (1)
but rather according to whether or not

Resp
(
xv, y,GSC

(
xleftSon(v), y

))
= hasEntropy, (2)

where GSC(xleftSon(v), y) is a matrix with at most logn rows
(as the depth of the tree) that contains BExt(xleftSon(v), y) as
a row, as well as BExt(xw, y), where w is the (x, y)-favored
son of leftSon(v), and also BExt(xr, y), where r is the (x, y)-
favored son of w, etc.

2.3 The Strategy For The Rest of Our Con-
struction

To carry the analysis of our disperser, we require even
more structure from our sources than the structure required
by [BRSW12]. First, we require both X and Y to have a
tree-structure. In previous works [BKS+10, BRSW12], the
second source Y was used mainly to “locate the entropy” of
the source X, and the only assumption on Y was that it has
a sufficient amount of entropy for this purpose. We, however,
will make use of the structure of Y as well.

𝑣𝑡𝑜𝑝(𝑇)

𝑣𝑚𝑖𝑑(𝑇)

𝑣𝑏𝑜𝑡(𝑇)

𝑟𝑜𝑜𝑡 𝑇

Figure 2: The “triple block-source” structure of an
entropy-tree.

Second, we need both X and Y to have a “triple block-
source” structure. That is, we assume that X has a TX -
structure with a node vtop(TX) corresponding to the block-
source Xvtop(TX ). We then assume that left(Xvtop(TX )) has
its own tree-structure with a node vmid(TX) corresponding to
a second block-source Xvmid(TX ) lying inside left(Xvtop(TX )).
Finally, we require that left(Xvmid(TX )) has its own tree-
structure with a node vbot(TX) that corresponds to a third
block-source Xvbot(TX ) that lies inside left(Xvmid(TX )). The
same goes for Y . Namely, Y also has a triple block-source
structure. In particular, the entropy-tree of Y , denoted by
TY , has nodes that we denote by utop(TY ), umid(TY ), and
ubot(TY ), analogous to vtop(TX), vmid(TX), and vbot(TX) in
TX . We allow ourselves to change the definition of an entropy-
tree given in the previous section so that it will capture this
“triple block-source” structure, but the reader should not
worry about these details at this point.

Given this structure of the sources, we are ready to give a
high-level overview of our construction. In the subsequent
sections of the overview (Section 2.4 and Section 2.5), we give
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further details. Let X be a TX -structured source and let Y
be a TY -structured source, for some entropy-trees TX , TY . At
the first step, the disperser identifies the entropy-path of TX
and the entropy-path of TY using the algorithm of [BRSW12].
More precisely, given the samples x ∼ X ,y ∼ Y , we compute
two paths denoted by pobs(x, y) = v0(x, y), . . . , vlog(n)−1(x, y),
qobs(x, y) = u0(x, y), u1(x, y), . . . , ulog(n)−1(x, y). This step
must be done with some care. From technical reasons (re-
lated to the way the error term behaves when moving to
subsources), we cannot use x, y to first find the entropy-path
of TX and then to find the entropy-path of TY . Thus, in
some sense, the two paths must be computed simultaneously.

At this point, ignoring some small error term, we have that
there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such
that for any (x, y) ∈ sup((X ′, Y ′)) it holds that pobs(x, y)
(resp. qobs(x, y)) contains the entropy-path of TX (resp. TY ).
In particular, we have that vdepth(vtop(TX ))(X

′, Y ′) is fixed to
vtop(TX), and the same holds for vmid(TX), vbot(TX), as well as
for utop(TY ), umid(TY ), and ubot(TY ). To keep the notations
clean, we write X,Y for X ′, Y ′ in this proof overview.

At the second step of the algorithm, we identify vmid(TX)
with high probability over subsources X ′ ⊂ X, Y ′ ⊂ Y . This
sounds fantastic – having found vmid(TX), we can simply
output BExt(X ′vmid(TX ), Y

′) which is close to uniform. Un-
fortunately, however, the only way we know how to find
vmid(TX) requires us to fix left(X ′vmid(TX )). That is, once

found, X ′vmid(TX ) is no longer a block-source. We elaborate
on how to find vmid(TX) in Section 2.4. Then in Section 2.5,
we show how to determine the output even after loosing the
block-structure of Xvmid(TX ).

2.4 Finding vmid(TX)

Given x, y ∈ {0, 1}n, the key idea we use for identifying
vmid(TX) on pobs(x, y) lies in the design of a challenge that
we call the node-path challenge.

The node-path challenge and vobsmid(x, y)

𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) 𝑞𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦)

𝑣𝑡𝑜𝑝 𝑇𝑋

𝑣𝑚𝑖𝑑 𝑇𝑋

𝑣𝑏𝑜𝑡 𝑇𝑋

𝑢𝑡𝑜𝑝 𝑇𝑌

𝑢𝑚𝑖𝑑 𝑇𝑌

𝑢𝑏𝑜𝑡 𝑇𝑌
𝑣𝑖 𝑥, 𝑦

𝑢𝑖 𝑥, 𝑦
𝐵𝐸𝑥𝑡 𝑦𝑢𝑖 𝑥,𝑦 , 𝑥𝑣𝑖(𝑥,𝑦)

Figure 3: The node-path challenge.

Let v be a node in TX , and let q = w0, . . . , wlog(n)−1 be a
root-to-leaf path in TY . We define the challenge NPC(xv, yq)
to be the log(n)-rows Boolean matrix such that for i =
0, 1, . . . , log(n)−1, NPC(xv, yq)i = BExt (ywi , xv) . We define
vobsmid(x, y) to be the node v on pobs(x, y) with the largest depth

such that

Resp
(
x, y,NPC

(
xv, yqobs(x,y)

))
= hasEntropy. (3)

Informally speaking, based on the node-path challenge, a
node on pobs(x, y) uses the path qobs(x, y) so to prove that it
is vmid(TX).

Ideally, we would want to prove that vobsmid(x, y) = vmid(TX)
for any (x, y) ∈ sup((X,Y )). By now we know that this is
too much to ask for, and in any case, it suffices to prove that
there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y such
that with high probability over (x, y) ∼ (X ′, Y ′) it holds that
vobsmid(x, y) = vmid(TX). Unfortunately, we will not be able to
prove that either. What we will be able to show is that there
exist strings α, β such that the following holds. Define Xα =
X |

(
XleftSon(vmid(TX )) = α

)
, Yβ = Y |

(
YleftSon(umid(TY )) = β

)
,

and let imid(TX) denote the depth of vmid(TX).
The way we choose α, β is with respect to the error that we

constantly ignore throughout this overview. Thus, assume
that α, β are chosen in such a way that allows us to con-
tinue ignoring the error (this is done by a simple averaging
argument). No further requirement is posed on α, β.

Proposition 1. There exist low-deficiency subsourcesXα,β ⊂
Xα, Yα,β ⊂ Yβ , such that with high probability over (x, y) ∼
(Xα,β , Yα,β), it holds that

∀i > imid(TX) Resp
(
x, y,NPC

(
xvi(x,y), yqobs(x,y)

))
= fixed,

Resp
(
x, y,NPC

(
xvimid(TX )(x,y), yqobs(x,y)

))
= hasEntropy.

Note that by the way we defined vobsmid(x, y), Proposition 1
yields that vobsmid(x, y) = vmid(TX) with high probability over
(x, y) ∼ (Xα,β , Yα,β). In particular, this gives us an algorithm
for computing vmid(TX) – simply go up the computed path
pobs(x, y) until a node v is found for which Equation (3) holds.
In the rest of this section we prove Proposition 1.

Proposition 1 has two parts. First, it states that the node-
path challenges associated with nodes below vimid(TX )(x, y) on
the path pobs(x, y) are responded with high probability over
x, y that are sampled from some low-deficiency subsources
of Xα, Yβ . Second, the node-path challenge associated with
vimid(TX )(x, y) is left unresponded with high probability over
the samples.

Recall that, ignoring a small error term, we assume that
vimid(TX )(x, y) = vmid(TX). Lets first consider the nodes
below vmid(TX) on pobs(x, y). Naturally, we want to use the
challenge-response mechanism. For that we must find low-
deficiency subsources X ′α ⊂ Xα, Y ′β ⊂ Yβ such that for all
i > imid(TX), the challenge

NPC
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobs(X′α,Y ′β)

)
(4)

is fixed. To this end we show that

NPC
(

(X ′α)vi(X′α,Yβ), (Yβ)qobs(X′α,Yβ)

)
is a deterministic function of Yβ . Indeed, in such case and
since the challenge consists of a relatively small number
of bits, we can find a low-deficiency subsource Y ′β ⊂ Yβ
such that the random variable in Equation (4) is fixed to a
constant. For i > imid(TX), our starting point is the random

variable NPC
(

(Xα)vi(Xα,Yβ), (Yβ)qobs(Xα,Yβ)

)
. To make this

variable depend solely on Yβ , by moving to a subsource of
Xα, we must consider the 3 appearances of Xα. We start
with qobs(Xα, Yβ).
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Claim 1. There exists a deficiency logn subsource X ′α ⊂
Xα such that qobs(X

′
α, Yβ) is fixed.

Proof. Let ibot(TY ) denote the depth of ubot(TY ). Recall
that the path qobs(Xα, Yβ) contains the entropy-path of TY .
In particular, the nodes u0(Xα, Yβ), . . . , uibot(TY )(Xα, Yβ) are
fixed. It is left to argue that there is a low-deficiency sub-
source X ′α ⊂ Xα such that all of the remaining nodes, namely,
uibot(TY )+1(X ′α, Yβ), . . . , ulog(n)−1(X ′α, Yβ) are fixed as well.

Let us first consider the random node uibot(TY )+1(Xα, Yβ)
that is the son of the fixed node uibot(TY )(Xα, Yβ) = ubot(TY ).
According to Equation (2), the node ubot(TY ) decides which
of its two sons its favor, namely, which of its sons will be on
qobs(Xα, Yβ), according to whether or not

Resp
(
(Yβ)ubot(TY ), Xα,GSC

(
(Yβ)leftSon(ubot(TY )), Xα

))
= hasEntropy. (5)

By definition, ubot(TY ) is a descendant of leftSon(umid(TY )).
Further, (Yβ)leftSon(umid(TY )) is fixed. Thus, also (Yβ)ubot(TY )

and (Yβ)leftSon(ubot(TY )) are fixed to some constants. Therefore,
the Boolean expression in Equation (5) is a deterministic
function of Xα. One can show that there exists a deficiency
1 subsource X ′ of Xα such that the Boolean expression in
Equation (5) is fixed. In particular, uibot(TY )+1(X ′, Yβ) is
fixed to a constant.

At this point we can apply the same argument to ibot(TY )+
2. Indeed, uibot(TY )+1(X ′, Yβ) is fixed to a constant and all
appearances of Yβ in the Boolean expression that is analogous
to Equation (5) are again fixed to constants for the same
reason as before. Since this process terminates after at most
log n steps and since in each iteration we move to a deficiency
1 subsource of the previous obtained subsource, the claim
follows.

We turn to show that for all i > imid(TX),

NPC
(

(X ′α)vi(X′α,Yβ), (Yβ)qobs(X′α,Yβ)

)
is a deterministic function of Yβ . By the discussion above,
this will prove the first part of Proposition 1. By Claim 1, we
already know that qobs(X

′
α, Yβ) is fixed to a constant. Thus, it

suffices to show that (X ′α)vi(X′α,Yβ) is a deterministic function

of Yβ for all i > imid(TX). By an argument similar to the
one used in the proof of Claim 1, one can show that for any
such i, vi(X

′
α, Yβ) is a deterministic function of Yβ . Note

further that, by the definition of an entropy-tree, since i >
imid(TX), we have that vi(X

′
α, Yβ) is always (that is, for every

(x, y) ∈ sup((X ′α, Yβ))) a descendant of leftSon(vmid(TX)).
Since (X ′α)leftSon(vmid(TX )) is fixed to a constant we conclude
that (X ′α)vi(X′α,Yβ) is indeed a deterministic function of Yβ .

By the discussion above, we are now in a position to
obtain a low-deficiency subsource Y ′β ⊂ Yβ such that the ran-

dom variable NPC
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobs(X′α,Y ′β)

)
is fixed

to a constant. We can then apply the challenge-response
mechanism and conclude that there exist low-deficiency sub-
sources Xα,β ⊂ X ′α, Yα,β ⊂ Y ′β such that for any (x, y) ∈
sup((Xα,β , Yα,β)), it holds that

∀i > imid(TX) Resp
(
x, y,NPC

(
xvi(x,y), yqobs(x,y)

))
= fixed.

The challenge of vmid(TX) is left unresponded
To prove Proposition 1, it suffices to show that w.h.p over
(x, y) ∼ (Xα,β , Yα,β), it holds that

Resp
(
x, y,NPC

(
xvmid(TX ), yqobs(x,y)

))
=hasEntropy.

As utop(TY ) is on the path qobs(x, y) ∀(x, y) ∈ sup(Xα,β , Yα,β),

the matrix NPC
(

(Xα,β)vmid(TX ), (Yα,β)qobs(Xα,β ,Yα,β)

)
con-

tains the row

BExt
(
(Yα,β)utop(TY ), (Xα,β)vmid(TX )

)
. (6)

Since Xvmid(TX ) is a block-source, (Xα)vmid(TX ) has a signif-
icant amount of entropy. Indeed, Xα is obtained from X
by fixing XleftSon(vmid(TX )) = left(Xvmid(TX )). As Xα,β is a
low-deficiency subsource of Xα, (Xα,β)vmid(TX ) also has a
significant amount of entropy.

We now observe that (Yα,β)utop(TY ) is a block-source. In-
deed, Yutop(TY ) is a block-source and Yβ is obtained from Y
by fixing YleftSon(umid(TY )). Since Yumid(TY ) is a block-source,
this fixing leaves some entropy in (Yβ)umid(TY ). Recall further
that (Yβ)umid(TY ) lies inside left((Yβ)utop(TY )) as umid(TY ) is
a descendant of leftSon(utop(TY )). Thus, (Yα,β)utop(TY ) is a
block-source.

Consider now any low-deficiency subsources X̂ ⊂ Xα,β ,

Ŷ ⊂ Yα,β . One can show that X̂vmid(TX ) has a signifi-

cant amount of entropy and that Ŷutop(TY ) is a block-source
(with some deterioration in parameters). Thus, for any low-

deficiency subsources X̂, Ŷ of Xα,β , Yα,β , respectively, we
have that the challenge matrix associated with vmid(TX) con-
tains a row that is close to uniform. In particular this matrix
is close to having high entropy. Thus, by the challenge-
response mechanism, we have that the node-path challenge
associated with vmid(TX) is left unresponded with high prob-
ability over (x, y) ∼ (Xα,β , Yα,β), as desired.

2.5 Determining The Output
Lastly, we compute the output

Disp(x, y) = BExt
(
xvobs

mid
(x,y) ◦ x, y

)
,

where by xvobs
mid

(x,y) ◦ x we denote the block-source with first

block xvobs
mid

(x,y) and second block that equals x. There are two

potential problems with applying BExt the way we do above.
First, we see that the block-source fed to BExt depends on
the sample y, which is problematic since y is used as a sample
from the source as well. This, however, is a non-issue. Indeed,
recall that with high probability over (x, y) ∼ (Xα,β , Yα,β)
it holds that vobsmid(x, y) = vmid(TX), and so ignoring a small
error, the computation of the extractor BExt above is the
same as BExt

(
xvmid(TX ) ◦ x, y

)
.

Now that we have shown that there are no dependencies be-
tween the two samples fed to BExt, we only need to make sure
that the first sample is indeed coming from a block-source
when sampling (x, y) ∼ (Xα,β , Yα,β). Too see why this is
true, recall that vmid(TX) is a descendant of leftSon(vtop(TX))
and that Xvtop(TX ) is a block-source. As Xα,β is obtained
from X by fixing X leftSon(vmid(TX )) (and by moving to low-
deficiency subsources) and since Xvmid(TX ) is a block-source,
we have that (Xα,β)vtop(TX ) is also a block-source. Therefore,
(Xα,β)vmid(TX ) ◦Xα,β is also a block-source. This shows that
the application of BExt above is valid, and the output is
close to uniform with high probability over (Xα,β , Yα,β). In
particular, the output is non-constant.
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