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Goal of Transferring Fairness Across Domains
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● There are scenarios where we may have labeled data in one domain but 
unlabeled data in another domain. 

○ feature, label, sensitive attribute triplet in source domain and 
features in target domain

● We would like to extend fairness guarantee in not just the source 
domain, but also a target domain

● We propose an adversarial network structure for ensuring a fair and 
accurate classifier for target domain with available data



What is Fairness?
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● Choosing a fairness metric is dependent on the 
domain concerns and the problem setting

● Our research specifically addresses ensuring 
○ Equalized Odds

■ A classifier satisfies this definition if the 
subjects in the protected and 
unprotected groups have equal true 
positive rate and equal false positive 
rate



Overview of Fair Representation Learning
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Data x Function f
Representation

g(x)

● Finding a function f that encodes data containing sensitive attribute to 
a representation that is debiased 

○ Raw data may contain both explicit and implicit sensitive 
attributes

■ For race, the implicit attribute may be zip code

● Deriving fair representation is beneficial for avoiding exploitation or 
discrimination using the data representation

○ Data vendor may provide the fair representation instead of raw 
data 

(Encoder)



Learning Adversarially Fair and Transferable Representations
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Proposes adversarial network structure and theoretical 

theorems for bounds on fairness definitions. 

● The adversarial network seeks to predict the 

sensitive attribute

○ Maximize adversarial objective , 

● The classifier seeks to predict the label. A decoder is 

optional to reconstruct original data. 

○ Minimize classifier loss and reconstruction loss 

Can be supervised or unsupervised

Madras, Creager, Pitassi, Zemel

X: input data (images of faces)
Z: representation
A: predicted sensitive attribute (race)
Y: predicted output (gender)



Extending Adversarially Fair Representation to Target Domain
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● Use the fairness adversary’s 

predicted sensitive attribute as input 

for domain adversary in predicting 

the domain. 

● By minimizing the loss of the two 

adversaries and the loss of the 

classifier, we expect to find a feature 

Z that is indistinguishable in its 

sensitive attribute and its domain. X: input data (images of faces)
Z: representation
A: predicted sensitive attribute (race)
D: predicted domain (source or target)
Y: predicted output (gender)

Classifier loss Fair adversary loss Domain adversary loss



Implementation 
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● Dataset: UTK Face

○ Creates source and target domain by 

choosing source to be ages 10-40, and 

target to be ages over 40 

○ Generates binary case by subsetting the 

white and black races only 

○ Predicting for gender

● Encoder and classifier: VGG network 

○ Not pretrained since pretraining dataset 

might include target domain distribution

○ Last two fully connected layers as classifier, 

rest as encoder

● Adversaries: two fully connected layers 

○ Strong adversary achieving 95%+

X: input data (images of faces)
Z: representation
A: predicted sensitive attribute (race)
D: predicted domain (source or target)
Y: predicted output (gender)



Results for Determining Gender 
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Source
(10-40 age)

Target
(>40 age)

White TPR Black TPR White FPR Black FPR White TPR Black TPR White FPR Black FPR

pretrained 0.913* 1* 0.097* 0.06* 0.69* 0.75* 0.036* 0.012*

Baseline
(0-1)

0.725 0.500 0.246 0.250 0.503 0.333 0.185 0.091

Baseline-fair
(0-1-2)

0.706 0.600 0.201 0.250 0.471 0.417 0.166 0.091

Baseline-fair-transfer
(source-only)
(0-1-2-3)

0.791 0.600 0.276 0.333 0.551 0.333 0.274 0.091

Baseline-fair-transfer
(source+target)
(0-1-2-3)

0.758 0.700 0.299 0.333 0.556 0.417 0.236 0.182

* mean

White acc:0.739, Black acc:0.636 White acc:0.645, Black acc:0.609



Results for Determining Gender 

9

Source
(10-40 age)

Target
(>40 age)

White TPR Black TPR White FPR Black FPR White TPR Black TPR White FPR Black FPR

pretrained 0.913* 1* 0.097* 0.06* 0.69* 0.75* 0.036* 0.012*

Baseline
(0-1)

0.725 0.500 0.246 0.250 0.503 0.333 0.185 0.091

Baseline-fair
(0-1-2)

0.706 0.600 0.201 0.250 0.471 0.417 0.166 0.091

Baseline-fair-transfer
(source-only)
(0-1-2-3)

0.791 0.600 0.276 0.333 0.551 0.333 0.274 0.091

Baseline-fair-transfer
(source+target)
(0-1-2-3)

0.758 0.700 0.299 0.333 0.556 0.417 0.236 0.182

* mean

White acc:0.651, Black acc:0.609White acc:0.732, Black acc:0.682



Results for Determining Gender 

10

Source
(10-40 age)

Target
(>40 age)

TPR Diff FPR Diff TPR Diff FPR Diff

Pretrained 0.087 0.037* 0.06 0.024

Baseline
(0-1)

0.225 0.004 0.170 0.094

Baseline-fair
(0-1-2)

0.106 0.049 0.054 0.075

Baseline-fair-tra
nsfer
(source-only)
(0-1-2-3)

0.191 0.057 0.218 0.183

Baseline-fair-tra
nsfer
(source+target)
(0-1-2-3)

0.058 0.034 0.139 0.054

* mean



Results for Determining Gender 
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Source
(10-40 age)

Target
(>40 age)

White Acc Black Acc White Acc Black Acc

Baseline
(0-1)

0.739 0.636 0.645 0.609

Baseline-fair
(0-1-2)

0.749 0.682 0.637 0.652

Baseline-fair-transfer
(source-only)
(0-1-2-3)

0.760 0.636 0.631 0.609

Baseline-fair-transfer
(source+target)
(0-1-2-3)

0.732 0.682 0.651 0.609

* mean



Conclusion and Next Steps
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● Tune the regular VGG to increase baseline accuracy on 
gender classification task and additional datasets

● Compare Fair-Transfer with fair representation result fed 
into the domain adversarial network

● Hyperparameter search for improving Fair-Transfer results
○ Balance the hyperparameter in the loss function to 

account for the two adversarial loss
● Extend the theoretical bounds for transfer fairness

● We produced fairness improvement in source and target 
domain using fair and domain adversaries for our task of 
gender classification while maintaining accuracy



Thank you!
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Thank you to Dr. Furong Huang, Bang An, my 
group, as well as the REU program for supporting 
my research. 


