

1

Transfer Fair Representation Across Domains

Mentors: Dr. Furong Huang, Bang An REU-CARR 2021

Goal of Transferring Fairness Across Domains

- There are scenarios where we may have labeled data in one domain but unlabeled data in another domain.
 - **feature, label, sensitive attribute** triplet in source domain and **features** in target domain
- We would like to extend fairness guarantee in not just the source domain, but also a target domain
- We propose an adversarial network structure for ensuring a fair and accurate classifier for target domain with available data

What is Fairness?

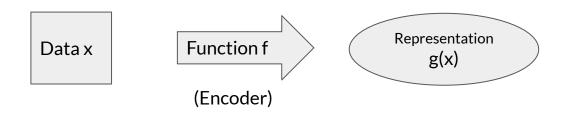
- Choosing a fairness metric is dependent on the domain concerns and the problem setting
- Our research specifically addresses ensuring
 - Equalized Odds
 - A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal true positive rate and equal false positive rate

$$P(R=+|Y=y,A=a)=P(R=+|Y=y,A=b) \hspace{1em} y\in\{+,-\} \hspace{1em} orall a,b\in A$$

sensitivity, recall, hit rate, or true positive rate (TPR) $TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$

fall-out or false positive rate (FPR) $\mathrm{FPR} = \frac{\mathrm{FP}}{\mathrm{N}} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}} = 1 - \mathrm{TNR}$

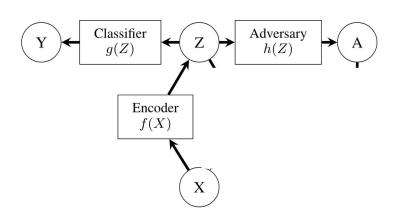
Overview of Fair Representation Learning



- Finding a function **f** that encodes data containing sensitive attribute to a representation that is debiased
 - Raw data may contain both explicit and implicit sensitive attributes
 - For race, the implicit attribute may be zip code
- Deriving fair representation is beneficial for avoiding exploitation or discrimination using the data representation
 - Data vendor may provide the fair representation instead of raw data

Learning Adversarially Fair and Transferable Representations

Madras, Creager, Pitassi, Zemel



X: input data (images of faces)Z: representationA: predicted sensitive attribute (race)Y: predicted output (gender)

Proposes adversarial network structure and theoretical theorems for bounds on fairness definitions.

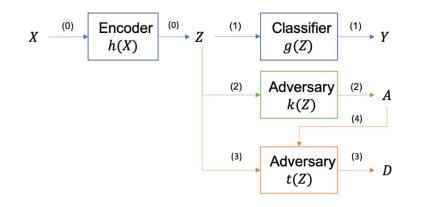
- The adversarial network seeks to predict the sensitive attribute
 - Maximize adversarial objective ,

 $L_{Adv}^{DP}(h) = 1 - \sum_{i \in \{0,1\}} \frac{1}{|\mathcal{D}_i|} \sum_{(x,a) \in \mathcal{D}_i} |h(f(x,a)) - a|$

- The classifier seeks to predict the label. A decoder is optional to reconstruct original data.
 - Minimize classifier loss and reconstruction loss

Can be supervised or unsupervised

Extending Adversarially Fair Representation to Target Domain



X: input data (images of faces)

Z: representation

A: predicted sensitive attribute (race)

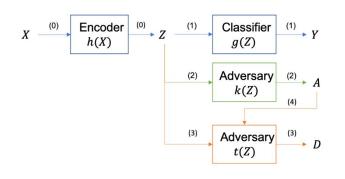
D: predicted domain (source or target)

Y: predicted output (gender)

- Use the fairness adversary's predicted sensitive attribute as input for domain adversary in predicting the domain.
- By minimizing the loss of the two adversaries and the loss of the classifier, we expect to find a feature Z that is indistinguishable in its sensitive attribute and its domain.

$$\begin{split} \mathcal{L}(h,g,k,t) &= \alpha \mathcal{L}_C(g(h(X_S)),Y_S) + \beta \mathcal{L}_{Adv}(k(h(X_S)),A_S) + \gamma \mathcal{L}_{Adv}(t(h(X),k(h(X))),D). \\ & \text{Classifier loss} \quad \text{Fair adversary loss} \quad \text{Domain adversary loss} \end{split}$$

Implementation



X: input data (images of faces)Z: representationA: predicted sensitive attribute (race)D: predicted domain (source or target)Y: predicted output (gender)

- Dataset: UTK Face
 - Creates source and target domain by choosing source to be ages 10-40, and target to be ages over 40
 - Generates binary case by subsetting the white and black races only
 - Predicting for gender
- Encoder and classifier: VGG network
 - Not pretrained since pretraining dataset might include target domain distribution
 - Last two fully connected layers as classifier, rest as encoder
- Adversaries: two fully connected layers
 - Strong adversary achieving 95%+

		Source (10-40 age)				Target (>40 age)			
	White TPR	Black TPR	White FPR	Black FPR	White TPR	Black TPR	White FPR	Black FPR	
pretrained	0.913*	1*	0.097*	0.06*	0.69*	0.75*	0.036*	0.012*	
Baseline	0.725	0.500	0.246	0.250	0.503	0.333	0.185	0.091	
(0-1)	White acc:0.739	White acc:0.739, Black acc:0.636			White acc:0.645, Black acc:0.609				
Baseline-fair (0-1-2)	0.706	0.600	0.201	0.250	0.471	0.417	0.166	0.091	
Baseline-fair-transfer (source-only) (0-1-2-3)	0.791	0.600	0.276	0.333	0.551	0.333	0.274	0.091	
Baseline-fair-transfer (source+target) (0-1-2-3)	0.758	0.700	0.299	0.333	0.556	0.417	0.236	0.182	

	Source (10-40 age)			Target (>40 age)				
	White TPR	Black TPR	White FPR	Black FPR	White TPR	Black TPR	White FPR	Black FPR
pretrained	0.913*	1*	0.097*	0.06*	0.69*	0.75*	0.036*	0.012*
Baseline (0-1)	0.725	0.500	0.246	0.250	0.503	0.333	0.185	0.091
Baseline-fair (0-1-2)	0.706	0.600	0.201	0.250	0.471	0.417	0.166	0.091
Baseline-fair-transfer (source-only) (0-1-2-3)	0.791	0.600	0.276	0.333	0.551	0.333	0.274	0.091
Baseline-fair-transfer (source+target) (0-1-2-3)	0.758	0.700	0.299	0.333	0.556	0.417	0.236	0.182
	White acc:0.732, Black acc:0.682				White acc:0.651, Black acc:0.609			

		ource 40 age)	Target (>40 age)		
	TPR Diff	FPR Diff	TPR Diff	FPR Diff	
Pretrained	0.087	0.037*	0.06	0.024	
Baseline (0-1)	0.225	0.004	0.170	0.094	
Baseline-fair (0-1-2)	0.106	0.049	0.054	0.075	
Baseline-fair-tra nsfer (source-only) (0-1-2-3)	0.191	0.057	0.218	0.183	
Baseline-fair-tra nsfer (source+target) (0-1-2-3)	0.058	0.034	0.139	0.054	

10

		urce 0 age)	Target (>40 age)		
	White Acc	Black Acc	White Acc	Black Acc	
Baseline (0-1)	0.739	0.636	0.645	0.609	
Baseline-fair (0-1-2)	0.749	0.682	0.637	0.652	
Baseline-fair-transfer (source-only) (0-1-2-3)	0.760	0.636	0.631	0.609	
Baseline-fair-transfer (source+target) (0-1-2-3)	0.732	0.682	0.651	0.609	

Conclusion and Next Steps

• We produced fairness improvement in source and target domain using fair and domain adversaries for our task of gender classification while maintaining accuracy

- Tune the regular VGG to increase baseline accuracy on gender classification task and additional datasets
- Compare Fair-Transfer with fair representation result fed into the domain adversarial network
- Hyperparameter search for improving Fair-Transfer results
 - Balance the hyperparameter in the loss function to account for the two adversarial loss
- Extend the theoretical bounds for transfer fairness

Thank you!

Thank you to Dr. Furong Huang, Bang An, my group, as well as the REU program for supporting my research.