
An L.P. Approach
We combine and extend two existing LP approaches to scheduling.
This constraint was first proven valid by Andreas Schulz [4] for
scheduling jobs on a bank of identical parallel machines.

This constraint was used for concurrent open shop scheduling by
several researchers over the 2000’s

Both of these introduce an exponential number of constraints, but
can still be solved in weakly polynomial time with the “Ellipsoid
Method” for linear programming (when used with an appropriate
separation oracle).

Over the course of the summer, we proved the validity of all the
constraints in the following linear program, and developed a sepa-
ration oracle to solve it.

Algorithms for Scheduling Data Centers & Assembly Systems
The first provably correct approximation algorithms for multi-machine concurrent open shop environments.

Motivation
Data is distributed, but practical considerations prevent us from
moving everything to one place for computation.

Distributed computing frameworks such as MapReduce provide
a means to divide datasets, perform distributed computation, and
combine the results into a final product. If a single subset of the
data lags behind, the entire query is affected. For this reason,
data centers must collaborate to provide fast service.

The associated scheduling problem is NP-hard even if we model
each datacenter as a single machine. In this special case, ap-
proximation algorithms have existed for several years. But what
if we don’t want to make this simplification?

1.	 How do we schedule queries “optimally” when specifically
considering how many machines each datacenter has?

2.	 What if each job had a collection of parallelizable tasks at
each datacenter, rather than a single task?

3.	 What if the machines at a given data center vary in speed?

Our goal was to develop provably correct algorithms for more
realistic models of datacenter scheduling.

A Toy Example

Prior Work
[1] Teolo Gonzalez, Oscar Ibarra, and Sartaj Sahni. “Bounds for
LPT Schedules on Uniform Processors”.
[2] Queyranne. “Structure of a simple scheduling polyhedron”
[3]Sriskandarajah & Wagneur. “Openshops with jobs overlap”.
[4] Andreas Schulz. “Polytopes and Scheduling”.
[5] Zhi-Long Chen and Nicholas G. Hall. “Supply Chain Sched-
uling: Assembly Systems”. 2000.
[6] Naveen Garg, Amit Kumar, and Vinayaka Pandit. “Order
Scheduling Models: Hardness and Algorithms”.
[7] Leung, Li, and Pinedo. “Scheduling orders for multiple prod-
uct types to minimize total weighted completion time”.
[8] Monaldo Mastrolilli et al. “Minimizing the sum of weighted
completion times in a concurrent open shop”.
[9] Andreas Schulz. “From Linear Programming Relaxations
to Approximation Algorithms for Scheduling Problems : A Tour
D’Horizon”. 2012.
[10] Qiang Zhang, Weiwei Wu, and Minming Li. “Resource
Scheduling with Supply Constraint and Linear Cost”.
[11] Chien-chun Hung, Leana Golubchik, and Minlan Yu. “Sched-
uling Jobs Across Geo-Distributed Datacenters”.

A Primal-Dual Algorithm
A primal-dual algorithm we call “MUSSQ” [8] was developed for
concurrent open shop scheduling in 2011. It takes processing times
and weights as input, and returns an ordering in which all workcen-
ters will process the jobs. It is much faster than LP approaches, but
only supports one machine per workcenter.

We can transform a given multi-machine instance into a single
machine instance so that MUSSQ is able to solve it. The process is
simple: for each job, divide the total processing time that it takes on
each workcenter (sum over all tasks) by the number of machines
on that workcenter. We call this the “Total Scaled Processing
Time” (TSPT) transformation.

At first glance the transformation seems ad-hoc, but it’s grounded
in the following observation- dividing total processing times by the
number of machines is equivalent to the following valid constraint:

Nevertheless, TSPT has an issue: It can make very long tasks look
very short if the number of machines is large. For instance, a task
with duration 1000 on a workcenter with 500 machines seems as
though it could complete in 2 units of time. In reality, the job could
not complete any earlier than time 1000. To address this, we devel-
oped “Augmented Total Scaled Processing Time (ATSPT).”

Conclusion
Concurrent open shop scheduling has been a promising mod-
el for some instances of distributed computing. Prior to this
past summer, any implementations of published approximation
algorithms would have relied on an inaccurate abstraction of an
entire datacenter as a single resource. By the end of the sum-
mer, we had developed provably good algorithms that directly
addressed this simplification, and the implications that followed.

Our paper (“Non-Homogeneous Concurrent Open Shop”) is
under review, and covers a variety of results not discussed in
this poster.

Key Results
Our objective function was to minimize the total weighted
completion time of given collection of jobs.

If all machines within each datacenter are of the same speed,
then we demonstrated a 2-approximation LP-based algorithm,
and a 3-approximation primal-dual algorithm (additional results
for machines that vary in speed are covered in our paper).

If any of the jobs have collections of parallelizable tasks on some
datacenter, then both algorithms have a performance guaran-
tee of at least 3. Under certain circumstances, the LP remains a
2-approximation even with parallelizable tasks for each sub-job.

Riley Murray (rjmurray@berkeley.edu) | Megan Chao (megchao@mit.edu) | Samir Khuller (samir@cs.umd.edu)

Suppose we are given the following information:

There are 3 jobs, where each sub-job
consists of only a single task. Job 1
takes 1 unit of time on workcenter 1,
and 3 units of time on workcenter 2. Job
2 takes 2 units on workcenter 1 and 1
unit on workcenter 2. Job 3 takes 3 and
2 units on workcenters 1 and 2 respec-
tively.

Workcenter 1 has 2 machines, and
workcenter 2 has 1 machine.

One valid schedule is given
at left. If all jobs have equal
weight, the objective value for
this schedule is 11.

Problem Statement
Note: We phrase the problem in terms of “workcenters” rather
than “datacenters” to reflect the problem’s generality. The case
of one-machine-per-workcenter is known in the literature as
“concurrent open shop”.

We are given a set of workcenters, and a set of jobs. Each work-
center has some fixed number of machines, and each machine
has a given speed. Each job an associated weight, and a set of
tasks (a “sub-job”) to be completed at each workcenter.

Each task of each sub-job has an associated processing time.
Different sub-jobs of the same job, and different tasks of the same
sub-job may be processed concurrently.

The completion time of a job is defined as the earliest time at
which all sub-jobs have completed processing; produce a sched-
ule that minimizes the total weighted completion time of the jobs.

Given an input, we can solve the LP to get a super-optimal set of
completion times {CLP

j} for each job. Given these, translate com-
pletion times by 1/2 processing time on each workcenter, then sort
the result. This defines the order of jobs (sigma) that each work-
center will use in scheduling. Once each workcenter carries out list
scheduling, we have a new set of completion times {CREAL

j} which
defines our near-optimal schedule.

Each completion time in the set {CREAL
j} is a constant factor away

from the corresponding completion time in {CLP
j} (this is the source

of the approximation factor for our algorithm). If all machines on
each workcenter run at the same speed, this factor is 2, meaning
that this algorithm is 2-approximate.

The premise of ATSPT is simple: the completion time of a job
is trivially lower bounded by its longest processing time. That
is, we would like constraints of the form:

Paying special attention to the constraint defined over all sub-
sets of jobs, we see that if S contains a single job, then it is
equivalent to write Cj ≥ pj,i / mi . This motivates

So we define a new set of workcenters, where one and only
one job has nonzero processing time on each new workcen-
ter. Then we set this processing time equal to pj

*, and get the
desired constraint! This process is illustrated below.

