Egg Problems

William Gasarch-U of MD

The Set Up

There is a building that is 100 stories tall.

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

You want to determine x.

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

You want to determine x.
Basic Operation is egg-drop: and drop an egg off a floor.

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

You want to determine x.
Basic Operation is egg-drop: and drop an egg off a floor. Want to minimize number of drops.

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

You want to determine x.
Basic Operation is egg-drop: and drop an egg off a floor. Want to minimize number of drops.

- You only have a limited number of eggs.

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

You want to determine x.
Basic Operation is egg-drop: and drop an egg off a floor. Want to minimize number of drops.

- You only have a limited number of eggs.
- If an egg does not break then you can re-use it.

The Set Up

There is a building that is 100 stories tall.
You have rather strong eggs such that there is a floor x

- Drop an egg off $x-1$ st floor (or lower): will not break :-)
- Drop an egg off x th floor (or higher) it will break :-(

You want to determine x.
Basic Operation is egg-drop: and drop an egg off a floor. Want to minimize number of drops.

- You only have a limited number of eggs.
- If an egg does not break then you can re-use it.
- If an egg breaks then you can cannot re-use it.

One Egg

Get an answer AND prove its optimal.

One Egg

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg.

One Egg

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg.
2. How many drops needed if n floors, 1 egg. (Can ignore $+O(1)$ terms.)

Work on in groups.

One Egg Answers

Get an answer AND prove its optimal.

One Egg Answers

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg.

One Egg Answers

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg. Algorithm Floor 1, ..., floor 99. 99 drops.

One Egg Answers

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg. Algorithm Floor 1, ..., floor 99. 99 drops. Optimal If skip a floor then cannot know the answer.

One Egg Answers

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg. Algorithm Floor 1, ..., floor 99. 99 drops. Optimal If skip a floor then cannot know the answer.
2. How many drops needed if n floors, 1 egg. Algorithm Floor 1, ..., floor $n-1$. $n-1$ drops.

One Egg Answers

Get an answer AND prove its optimal.

1. How many drops needed if 100 floors, 1 egg. Algorithm Floor 1, ..., floor 99. 99 drops. Optimal If skip a floor then cannot know the answer.
2. How many drops needed if n floors, 1 egg. Algorithm Floor $1, \ldots$, floor $n-1$. $n-1$ drops.
Optimal If skip a floor then cannot know the answer.

Two Eggs

1. How many drops needed if 100 floors, 2 eggs.
2. How many drops needed if n floors, 2 eggs. (Can ignore $+O(1)$ terms.)

Work on in groups.

Two Eggs Answers

Two Eggs Answers

1. How many drops needed if 100 floors, 2 eggs.

Two Eggs Answers

1. How many drops needed if 100 floors, 2 eggs. Algorithm Floor 10, . ., floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19

Two Eggs Answers

1. How many drops needed if 100 floors, 2 eggs. Algorithm Floor 10,. . .floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19
Optimal Intuitively its balanced. See general case for proof.

Two Eggs Answers

1. How many drops needed if 100 floors, 2 eggs. Algorithm Floor 10,. . .floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19 Optimal Intuitively its balanced. See general case for proof.
2. How many drops needed if n floors, 2 eggs.

Two Eggs Answers

1. How many drops needed if 100 floors, 2 eggs. Algorithm Floor 10,. . .floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19 Optimal Intuitively its balanced. See general case for proof.
2. How many drops needed if n floors, 2 eggs. Algorithm Floor $\left.n^{1 / 2}, \ldots, n^{1 / 2}-1\right) n^{1 / 2}$. When goes SPLAT have $n^{1 / 2}$ floors poss, 1 egg. Use 1 -egg sol, $n^{1 / 2}$ drops. $2 n^{1 / 2}$.

Two Eggs Answers

1. How many drops needed if 100 floors, 2 eggs. Algorithm Floor 10,. ., floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19
Optimal Intuitively its balanced. See general case for proof.
2. How many drops needed if n floors, 2 eggs. Algorithm Floor $\left.n^{1 / 2}, \ldots, n^{1 / 2}-1\right) n^{1 / 2}$. When goes SPLAT have $n^{1 / 2}$ floors poss, 1 egg. Use 1 -egg sol, $n^{1 / 2}$ drops. $2 n^{1 / 2}$. Optimal If $g, 2 g$, etc and then 1-egg within a gap the worst case is roughly $\frac{n}{g}+g$. This is minimized when $g=n^{1 / 2}$.

YOU"VE BEEN PUNKED

William Gasarch-U of MD

Revisit Two Eggs Answers

Revisit Two Eggs Answers

How many drops needed if 100 floors, 2 eggs.

Revisit Two Eggs Answers

How many drops needed if 100 floors, 2 eggs.
Algorithm Floor 10,...,floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19

Revisit Two Eggs Answers

How many drops needed if 100 floors, 2 eggs.
Algorithm Floor 10,...,floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19
A Clue That This is Not Optimal

Revisit Two Eggs Answers

How many drops needed if 100 floors, 2 eggs.
Algorithm Floor 10,...,floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19
A Clue That This is Not Optimal

- If first drop SPLAT then takes 11 drops.

Revisit Two Eggs Answers

How many drops needed if 100 floors, 2 eggs.
Algorithm Floor 10,...,floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19
A Clue That This is Not Optimal

- If first drop SPLAT then takes 11 drops.
- If last drop SPLAT then takes 19 drops.

Revisit Two Eggs Answers

How many drops needed if 100 floors, 2 eggs.
Algorithm Floor 10,...,floor 90. When goes SPLAT have 10 floors poss and 1 egg. Use 1 -egg sol, 10 drops. 19
A Clue That This is Not Optimal

- If first drop SPLAT then takes 11 drops.
- If last drop SPLAT then takes 19 drops.
- There should be a way to make the worst case better and the best case worse.

A Trick! A Technique!

A Trick! A Technique!

Do Not Need To Have Constant Gap Size!

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm
15th floor. If SPLAT, 14 left, $1+13=14$ total

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm
15th floor. If SPLAT, 14 left, $1+13=14$ total
$(15+14)$ th Floor. If SPLAT, 13 left, $2+12=14$ total

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm
15th floor. If SPLAT, 14 left, $1+13=14$ total
$(15+14)$ th Floor. If SPLAT, 13 left, $2+12=14$ total
$(15+14+13)$ th Floor. If SPLAT, 12 left, $3+11=14$ total

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm
15th floor. If SPLAT, 14 left, $1+13=14$ total
$(15+14)$ th Floor. If SPLAT, 13 left, $2+12=14$ total
$(15+14+13)$ th Floor. If SPLAT, 12 left, $3+11=14$ total \vdots

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm
15th floor. If SPLAT, 14 left, $1+13=14$ total $(15+14)$ th Floor. If SPLAT, 13 left, $2+12=14$ total $(15+14+13)$ th Floor. If SPLAT, 12 left, $3+11=14$ total !
$(15+\cdots+4)$ th Floor. If SPLAT, 3 left, $12+2=14$ total Sum is 101, so actually works for 101 floors.

A Trick! A Technique!

Do Not Need To Have Constant Gap Size! Algorithm
15th floor. If SPLAT, 14 left, $1+13=14$ total
$(15+14)$ th Floor. If SPLAT, 13 left, $2+12=14$ total
$(15+14+13)$ th Floor. If SPLAT, 12 left, $3+11=14$ total !
$(15+\cdots+4)$ th Floor. If SPLAT, 3 left, $12+2=14$ total
Sum is 101, so actually works for 101 floors.
14 drops

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$.

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total :
$(k+\cdots+1)$ th Floor.

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total引
$(k+\cdots+1)$ th Floor.
Contrast

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total \vdots
$(k+\cdots+1)$ th Floor.
Contrast
Old Method: $2 \times n^{1 / 2}$ drops

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total \vdots
$(k+\cdots+1)$ th Floor.
Contrast
Old Method: $2 \times n^{1 / 2}$ drops
New Method: $2^{1 / 2} \times n^{1 / 2}$ drops

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total :
$(k+\cdots+1)$ th Floor.
Contrast
Old Method: $2 \times n^{1 / 2}$ drops
New Method: $2^{1 / 2} \times n^{1 / 2}$ drops
Is $\sim 2^{1 / 2} \times n^{1 / 2}$ optimal?

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total \vdots
$(k+\cdots+1)$ th Floor.
Contrast
Old Method: $2 \times n^{1 / 2}$ drops
New Method: $2^{1 / 2} \times n^{1 / 2}$ drops
Is $\sim 2^{1 / 2} \times n^{1 / 2}$ optimal? Vote YES or NO

Two Eggs General Case

Find least k with $1+2+\cdots+k \geq n$. Note: $k \sim 2^{1 / 2} \times n^{1 / 2}$. Algorithm k th floor. If SPLAT, $k-1$ left, $1+(k-1)=k+1$ total $(k+(k-1))$ th Floor. If SPLAT, $k-2$ left, $2+(k-1)=k$ total \vdots
$(k+\cdots+1)$ th Floor.
Contrast
Old Method: $2 \times n^{1 / 2}$ drops
New Method: $2^{1 / 2} \times n^{1 / 2}$ drops
Is $\sim 2^{1 / 2} \times n^{1 / 2}$ optimal? Vote YES or NO Answer is YES.

Optimal

Two eggs.
Given n, the optimal number of drops is least k with $1+2+\cdots+k \geq n$.

Optimal

Two eggs.
Given n, the optimal number of drops is
least k with $1+2+\cdots+k \geq n$.
Proof Sketch Any algorithm that deviates from the one we give has to do worse. Formally you would look at the first step where the algorithm differs from ours.

Three Eggs

Three Eggs

1. How many drops needed if 100 floors, 3 eggs.
2. ow many drops needed if n floors, 3 eggs. (Can ignore $+O(1)$ terms.)

Work on in groups.

Three Eggs Answer for 100

First need to know some two-egg answers

n	Sum	number of drops
1		0
2,3	$1+2 \geq 3$	2
$4,5,6$	$1+2+3 \geq 6$	3
$7,8,9,10$	$1+2+3+4 \geq 10$	4
$11, \ldots, 15$	$1+2+3+4+5 \geq 15$	5
$16, \ldots, 21$	$1+2+3+4+5+6 \geq 21$	6
$21, \ldots, 28$	$1+2+3+4+5+6+7 \geq 28$	7
$28, \ldots, 36$	$1+2+3+4+5+6+7+8 \geq 36$	8

How many drops needed if 100 floors, 3 eggs.
36th floor. If SPLAT use 2 -egg sol. $1+8=9$
$(36+28)$ th floor. If SPLAT use $2-\mathrm{egg}$ sol. $2+7=9$
$(36+28+21)$ th floor. If SPLAT use $2-\mathrm{egg}$ sol. $3+6=9$
$(36+28+21+15+10))$ th floor. If SPLAT use $2-\mathrm{egg}$ sol. $3+6=9$

Three Eggs Answer for n

Recall 2-egg for n least k such that

$$
1+2+\cdots+k \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

Rephrase:
Recall 2-egg for n least k such that

$$
\binom{1}{1}+\binom{2}{1}+\cdots+\binom{k}{1} \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

Three Eggs Answer for n

Recall 2-egg for n least k such that

$$
1+2+\cdots+k \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

Rephrase:
Recall 2-egg for n least k such that

$$
\binom{1}{1}+\binom{2}{1}+\cdots+\binom{k}{1} \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

2-egg for n least k such that

$$
\binom{2}{2}+\cdots+\binom{k}{2} \geq n
$$

Three Eggs Answer for n

Recall 2-egg for n least k such that

$$
1+2+\cdots+k \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

Rephrase:
Recall 2-egg for n least k such that

$$
\binom{1}{1}+\binom{2}{1}+\cdots+\binom{k}{1} \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

2-egg for n least k such that

$$
\binom{2}{2}+\cdots+\binom{k}{2} \geq n
$$

Approximate:

$$
\binom{2}{2}+\cdots+\binom{k}{2} \sim \sum_{i=2}^{k} \frac{i^{2}}{2} \sim \frac{k^{3}}{6}
$$

Three Eggs Answer for n

Recall 2-egg for n least k such that

$$
1+2+\cdots+k \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

Rephrase:
Recall 2-egg for n least k such that

$$
\binom{1}{1}+\binom{2}{1}+\cdots+\binom{k}{1} \geq n k \sim 2^{1 / 2} n^{1 / 2}
$$

2-egg for n least k such that

$$
\binom{2}{2}+\cdots+\binom{k}{2} \geq n
$$

Approximate:

$$
\begin{gathered}
\binom{2}{2}+\cdots+\binom{k}{2} \sim \sum_{i=2}^{k} \frac{i^{2}}{2} \sim \frac{k^{3}}{6} \\
\frac{k^{3}}{} \geq n
\end{gathered}
$$

e Eggs Answer for n

e Eggs Answer for n

Approximate:

$$
\binom{e-1}{e-1}+\cdots+\binom{k}{e-1}=\sum_{i=e-1}^{k} \frac{i^{e-1}}{(e-1)!} \sim \frac{k^{e}}{e!}
$$

e Eggs Answer for n

Approximate:

$$
\begin{gathered}
\binom{e-1}{e-1}+\cdots+\binom{k}{e-1}=\sum_{i=e-1}^{k} \frac{i^{e-1}}{(e-1)!} \sim \frac{k^{e}}{e!} \\
\frac{k^{e}}{e!} \geq n \\
k \geq(e!)^{e} n^{1 / e}
\end{gathered}
$$

