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VDW’s Thm

Def Let W , k, c ∈ N. Let COL : [W ]→ [c]. A mono k-AP is an
arithmetic progression of length k where every elements has the
same color. We often say

a, a + d , . . . , a + (k − 1)d are all he same color

VDW’s Thm For all k , c there exists W = W (k , c) such that for
all COL : [W ]→ [c] there exists a mono k-AP.



VDW’s Thm

Def Let W , k, c ∈ N. Let COL : [W ]→ [c]. A mono k-AP is an
arithmetic progression of length k where every elements has the
same color. We often say

a, a + d , . . . , a + (k − 1)d are all he same color

VDW’s Thm For all k , c there exists W = W (k , c) such that for
all COL : [W ]→ [c] there exists a mono k-AP.



VDW Easy Cases

VDW’s Thm For all k , c there exists W = W (k , c) such that for
all COL : [W ]→ [c] there exists a mono k-AP.

W (1, c)=1. A mono 1-AP is just 1 number.
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W (3, 2) exists

We will determine W later.
Let COL : [W ]→ [2].

We break [W ] into blocks of 5: B1, . . . ,B|W |/5.

We view the 2-coloring of [W ] as a 25-coloring of the Bi ’s
The next two slides are about what happens

1. Within one block.

2. If we take enough blocks, how they relate.
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Within a Block
Def: a, a + d , a + 2d is an almost mono 3AP if
COL(a) = COL(a + d) 6= COL(a + 2d). The color of an almost
mono 3AP is COL(a) = COL(a + d).

Look at the first three elements of a block of 5:

1. RRR or BBB. 1-2-3 is mono 3AP.

2. RBR or BRB. 1-3-5 is mono 3AP or almost mono 3AP.

3. RBB or BRR. 2-3-4 is mono 3AP or almost mono 3AP.

4. BBR or RRB. 1-2-3 is almost mono 3AP.

5. BRB. 1-3-5 is a mono 3AP or an almost mono 3AP.

6. BRR. 2-3-4 is mono 3AP or almost mono 3AP.

So always get a mono 3AP or an almost mono 3AP. Can assume
its almost mono 3AP and its R.

R   R   ?
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If have A Lot of Blocks Then . . .

We take enough blocks so that for all 2-colorings:

I Two of the blocks are the same color, say Bi and Bj .

I ∃k Bi -Bj -Bk is either mono 3AP or almost mono 3AP.

If there are 33 blocks then 2 are the same color.
Worst Case B1 and B33 same color. So need B65 to exist.
Hence need to take W = 5× 65 = 365.
We can get by with LESS blocks- we will consider this point after
the proof.
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W (3, 2) ≤ 365

Let COL : [W ]→ [2].

Break [W ] into 65 blocks of size 5 which we think of as being
32-colored.

I ∃i , j , k such that Bi -Bj -Bk form mono 3AP or almost mono
3AP.

I In each block there is a mono 3AP or an almost mono 3AP.
(This is why blocks-of-5.)

R R B

d d

R R B

d d
DD

d d

?

If ? is B then get B 3-AP.
If ? is R then get R 3-AP.
Done!
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Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.

However, whenever I give this talk someone bring it up. So I will
be proactive.

If a block is colored RRRBB we are done.

So we don’t really have to look at 32 colorings.

How many colorings of a block already have a mono 3AP.
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Side Note: Can Get By With Less Blocks (cont)

RRRXY with X ,Y ∈ {R,B}. 4 colorings.
BBBXY with X ,Y ∈ {R,B}. 4 colorings.
RBRRR
RBRBR
BRBBB
BRBRB
RBBBX with X ∈ {R,B}. 2 colorings.
BRRRX with X ∈ {R,B}. 2 colorings.
RRBBB
BBRRR

There are 16 blocks which already have a mono 3AP. Hence can
use 32− 16 = 16 blocks.
I really do not care.
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Is W (3, 2) = 365?

No
What is W (3, 2)?

One can work out by hand that

W (3, 2) = 9.

We will later say which VDW numbers are know and how they
compare to the bounds given by the proof of VDW’s Thm.

Spoiler Alert The few known VDW numbers are much smaller
than the bounds given by the proof of VDW’s Thm.
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W (3, 3)

COL : [W ]→ [3].

How big should the blocks be? 7.
Then ∀ 3-coloring of block ∃ mono 3AP or almost mono 3AP.

The 3-coloring of [W ] is a 37-coloring of the Bi ’s

Need for all 37 colorings of blocks get a mono 3AP or an almost
mono 3AP.
Need 2× 3+1 blocks.

R R B

d d

R R B

d d
DD

d d

G

Darn. Now what? Discuss
We have 2 almost mono 3APs of diff colors that same last element.
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I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size 7× 2× (37 + 1).

For any 2-coloring of [W ] the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff
colors that have same last elt.

2. ∃ either a mono 3AP or an almost mono 3AP of blocks.
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W (3, c)

From what you have seen:

I You COULD do a proof that W (3, 4) exists. You would need
to iterate what I did twice.

I You can BELIEVE that W (3, c) exists though might wonder
how to prove it formally.

I There are ways to formalize the proof; however, they are not
enlightening.

I The Hales-Jewitt Thm is a general theorem from which VDW
is a corollary. We won’t be doing that.
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What Did We Use to Prove W (3, c)?

W (2, c) = c + 1 is just PHP.

W (2, 25) =⇒ W (3, 2)
W (2, 32×3

7
+ 1) =⇒ W (3, 3).

W (2,X ) =⇒ W (3, 4) where X is very large.

Note that we do not do
W (3, 2) =⇒ W (3, 3).
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W (4, 2)

COL : [W ]→ [4].

Key Take blocks of size 2W (3, 2).
Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W (3, 2).

How many blocks? Want mono 3AP or almost mono 3AP of
blocks. 2W (3, 22W (3,2)).

R R R B

d d d

R R R B

d d d

R R R B

d d d

?

d d d

D D D

If ? is B get mono 4AP.
If ? is R get mono 4AP.
Done!
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W (k, c)

I You COULD do a proof that W (k, c). You would need to
iterate what I did . . . a lot.

I You can BELIEVE that W (k , c) exists though might wonder
how to prove it formally.

I There are ways to formalize the proof; however, the are not
enlightening.

I The Hales-Jewitt Thm is a general theorem from which VDW
is a corollary. We won’t be doing that.
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Induction, But On What?

(2, 2) ≺ (2, 3) ≺ · · · ≺ (3, 2) ≺ (3, 3) ≺ · · · ≺ (4, 2) · · ·

This is an ω2 induction. The ordering is well-founded so you can
do induction.

This is an ω2 induction. Thats why the numbers are so large.

How large? That takes another entire slide-deck to explain.
(Unless you’ve already seen my slide packet on Primitive Recursive
Functions,
in which case just know that the proof given gives bounds that are
NOT prim rec.)
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