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This paper gives improved asymptotic lower bounds to the Ramsey function 
R(k, t). Section 1 considers the symmetric case k = t while the more general 
case is considered in Section 2. 

1. THE SYMMETRIC CASE 

Define R(k) to be the minimal integer n so that if the edge of K, (the 
complete graph on n points) are two colored there is a set S of k vertices 
such that all edges (x, v}, x, y E S, are the same color. 

The existance of R(k) for all k is a special case of Ramsey’s Theorem 
for which an enormous literature exists. The “standard” proof (see, e.g., 
[4]) of the existance of R(k) yields 

which has been slightly improved recently to 

(Yackel[5]). It is expected that further small improvements could be made. 
The lower bound on R(k), due to ErdSs [l], is generally considered the 

canonical example of the “probabilistic method” in combinatorial 
mathematics. We shall outline this proof, and then show how a new 
method of L. Lovdsz gives a slight improvement. 

We let P denote probability, v denote “or,” concatenation or A denote 
“and,” and bar denote negation. We state the following obvious lemma 
without proof. 

* Research supported by ONR NOOO14-67-A-0204-0063. 

108 
Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



RAMSEY'S THEOREM-A NEW LOWER BOUND 109 

LEMMA 1. Let Ai , 1 < i < m, be events in a probability space with 
P(A,) < p. If mp < 1 then 

THEOREM 1 (Erdos [l]). rf 

0 ;f f-(3 < 1, (1) 
then R(k) > n. 

Proof. We call a coloring good if there is no set S of k vertices, all of 
whose edges are the same color. 

Fix k, n satisying (1). Let G be a random 2-coloring of K, . That is, each 
edge is independently colored, equally probably either color. If S is a set 
of k vertices, let A, be the event that all edges on S are the same color. 
Clearly 

P[A,] = 2’-(;). 

There are (3 different S. Hence, given (1) and Lemma 1, 

P [A A”] > 0, 

and therefore there is a G for which all A, are false. That is, there is a 
good coloring of K, . This implies R(k) > n. 

An application of Sterling’s Formula yields the following. 

COROLLARY 1. R(k) > k2”j2[(l/e ~‘2) + o(l)]. 

The improvement of Theorem 1 is based on the independence of A, , AT 
if 1 S n T 1 < 1. To make use of the “partial independence” of the A’s we 
use the following elementary, but far reaching, result of L. Lovasz. 

LEMMA 2. (Lovasz Local Theorem). Let G be a finite graph with 
maximal degree d and vertices l,..., m. Let Ai, 1 < i < m be events in a 
probability space such that Ai is independent of {Aj : (i, j) E E(G)}. Assume 
P(Ai)<pfor1<i<m.If4dp<1then 

P(A, *** Am) > 0. 

For completeness, we outline the proof given in [3]. We show, by 
induction on m, 

P(A, 1 A, ..* &J < 1/2d. (2) 
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Assume A, independent of Ai , i > d + 1. 

We prove (2) by bounding numerator and denominator of (3). The 
numerator 

P(A,A, ... A,,, I A,,, ... A,) < P(A, I &+, **. ;I,) = P(A,) G ad. 

The denominator 
d+l 

P(A, . . * &+1 I &+, ... A,,,) 3 1 - c P(Ad I A,,, .+. &J 
i=2 

where the penultimate inequality has required the inductive hypothesis, 

THEOREM 2. If 

4 (i)(, ” 2) 2’--(i) < I, 

then R(k) 3 n. 

Proof. Let As be as in Theorem 1. Then A, is independent of 
(AT : / S n T I < I} since S shares no edges with the T’s. We apply the 
Lovasz Local Theorem with 

COROLLARY 2. R(k) 2 k2”/“[(z/~/e) + o(l)] 

The corollary is again a simple application of Sterling’s Formula. This 
improvement of the lower bound by a factor of 2 does not lessen the gap 
between the bounds in any significant way. It is, however, the first improve- 
ment in the lower bound of R(k) in 27 years. 

If n is picked slightly less than the critical value in (2) then 

0 ; 2’-(t) -g 1. 

Thus, not only does there exist a two coloring of K, but “almost all” such 
colorings are good. However, using the Lovasz Local Theorem, 
P(& ..* &J may be very small. One can show that most colorings on 
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k2Llz (VZ/e + o(1)) points are not good. We have found a “rare” good 
coloring with a “random” method. 

2. THE GENERAL CASE 

Define R(k, t) to be the minimal integer n so that if the edges of K, are 
colored Red and Blue there is either a set S of k vertices all of whose edges 
are Red or a set T of t vertices all of whose edges are Blue. 

The “standard” proof [13] of Ramsey’s Theorem yields 

(5) 

We shall focus our attention on the case k tied, t + co. Then 

R(k, t) < c#-l, 

where cb is a constant dependent on k. This result has been slightly 
improved to 

R(k, t) < c ( ‘spb,of * ) t*-’ 

(Yackel [4]). 
We first derive a lower bound for R(k, t) by generalizing Theorem 1. 

THEOREM 3. If there exists p, 0 < p < 1, such that 

(3 P@ + (:) (1 -p)(i) < 1, 

then R(k, t) > n. 

Proof. Fix k, t, p, n satisfying (6). Let G be a two coloring (Red and 
Blue) of K, where each edge is colored Red with probability p and these 
probabilities are mutually independent. If S is a set of k vertices let As be 
the event that all edges on S are Red. If T is a set of t vertices let BT be the 
event that all edges in Tare blue. Clearly, 

P[As] = p@ P[Br] = (1 -p)(? 

So, given (5) and Lemma 1, 

P[LJ, A LlI&] > 0, 

and thus R(k, t) > n. 

(7) 
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Now let us fix k, let t -+ co, and consider the asymptotic consequences 
of (6). By selecting p = ~~l(~-l), we get 

0 
;: p(:) < nkpkWl)12/k! = l/k! 

Using the inequality 1 - p < e-p, we have 

0 T (1 _ p)(i) < (n”/t!) e-M--1)/2 

< [ne-p(t-1)/2]t/t!. 

If t - 1 > (2 In n)/p, then (6) holds. Asymptotically, then. 

R (k, (2 In n) n2/cli-l)(1 + o(l))) > n 

Expressing (9) in terms of the parameter I, we have the following. 

(8) 

(9) 

COROLLARY 3. For k fixed, t -+ 03 

R(k, t) > t(k-l)P+o(l). <lo>; 

A major open problem in this area is to determine 01 = a(k) such that 
R(k, t) = tn+o(l). It is not known if such an 01 exists. For k = 3 Erdbs [2] 
has shown 

R(3, t) > ct2/(ln t)“, (11) 

and hence a(3) = 2. A plausible conjecture is that al(k) = k - 1 for all 
k 3 3 but this is not even known for k = 4. 

We now give a generalization of the Lovasz Local Theorem. 

THEOREM 4. Let G be a finite graph on vertices l,..., m. Let 
Ai , 1 < i < m, be events in a probability space such that Ai is independent 
of{Aj : {i,j} E E(G)}. For 1 < i < m assume 

c P(4) < i (W 
{i.+G 

Assume, further, that P(A,) < 1 for all j. Then 

P(& ... Am) > 0. (13) 

When all P(A,) are equal the statement of Theorem 4 reduces to 
Lemma 2. The proof will parallel that of Lemma 2. We first observe that 
if P(A,) > 3 then, by (12), Aj is mutually independent of the other A’s and 



RAMSEY’S THEOREM - A NEW LOWER BOUND 113 

hence it suffices to show (13) with Aj deleted. We therefore assume 
P(Aj) < & for all j. 

We show, by induction on m, 

P(A, I A, ... &J < 2P(A1) 

Assume 1 is adjacent to 2, 3 ,..., d in G. Then 

(14) 

The numerator of (15) is < P(A,) as before. The denominator 

P(A, -*- A, 1 A,,, ... A,) > 1 - i P(Ai 1 A,,, *** A,) 
i=2 

> 1 - 5 2P(Ai) 
i=2 

2 $7 (16) 

where the penultimate inequality has required the inductive hypothesis. 
Finally 

This completes the proof. 

> 0. (17) 

We apply Theorem 4 to improve the lower bound for R(k, t). We first 
give the precise result. Let A C (l,..., n}, I A I = a. Denote byf(a, b, n) the 
number of I3 C (l,..., n}, 1 B ( = b, such that 1 A n B ( > 2. 

THEOREM 5. Let k < t < n. If there exists p, 0 -=c p ( 1, SO t/rat 

f(t, k, 4 P@ + f(t, t, 40 - P)@ < a, (18) 
then R(k, t) > n. 

Proof. Let G be as in Theorem 3. The events As , B, satisfy (6) and we 
need show (7). Our assumption (18) states that each BT is independent of 
all events except those with total probability < a. An event A, is 
independent of even more events, since k < t. (That is, f(a, b, n) is 
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monotone increasing in a). Therefore the conditions of Theorem 4 are met, 
implying (7). 

Now we examine the asymptotic consequences of Theorem 5 in the 
case of k fixed, t + cc. We bound 

f(t, 6 4 < (:) < nt, 

f(t, k, 4 S ($(k r 2) = ckt*nk-2. 
If there exists p, 0 <p < 1 so that 

&t2nk-2$) < & 

and 

0 
; (1 -p)(i) < +, 

then (18) holds. Set B = (k - 2)/((g) - 2) and, for any 0 < 8 < E, 
t = ne* and p = n--r-8+8. For n sufficiently large (18) holds and thus 
R(k, t) > n. Expressing n in terms of t. 

COROLLARY 3. For k fixed, t -+ co 

R(k, t) > tor+~(l) 

where 

OL = ((‘5) - 2)/(k - 2). 

Note that for k large OL - (k + I)/2 + o(l). Table 1 gives the various 
upper and lower bounds for a(k) 

TABLE I 

Bounds on or(k) 

Lower by Lower by Lower by 
k Corollary 3 Theorem 5 Brd6s [2] Upper by (5) 

3 1 1 2 2 
4 14 2 2 3 
5 2 23 2 4 
6 24 34 2 5 
7 3 3.8 2 6 
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