BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Small Ramsey Numbers

Exposition by William Gasarch

March 12, 2025

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The First Theorem in Ramsey Theory

Thm For all COL: $\binom{[6]}{2} \rightarrow [2]$ there exists a homog set of size 3.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Given a 2-coloring of the edges of K_6 we look at vertex 1.

(ロト (個) (E) (E) (E) (E) のへの

Given a 2-coloring of the edges of K_6 we look at vertex 1. 2 3 4 5 6

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Given a 2-coloring of the edges of K_6 we look at vertex 1. 2 3 4 5 6

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

There are 5 edges coming out of vertex 1.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

There are 5 edges coming out of vertex 1. They are 2 colored.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

There are 5 edges coming out of vertex 1.

They are 2 colored.

 \exists 3 edges from vertex 1 that are the same color.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1.

They are 2 colored.

 \exists 3 edges from vertex 1 that are the same color.

We can assume (1,2), (1,3), (1,4) are all **RED**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(1,2), (1,3), (1,4) are RED

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

We Look Just at Vertices 1,2,3,4

We Look Just at Vertices 1,2,3,4

If (2,3) is **RED** then get **RED** Triangle. So assume (2,3) is **BLUE**.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

(2,3) is **BLUE**

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

If (3,4) is **RED** then get **RED** triangle. So assume (3,4) is **BLUE**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

(2,3) and (3,4) are **BLUE**

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

(2,3) and (3,4) are **BLUE**

(2,3) and (3,4) are **BLUE**

If (2,4) is **RED** then get **RED** triangle. So assume (2,4) is **BLUE**.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

(2,4) is **BLUE**

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Note that there is a **BLUE** triangle with verts 2, 3, 4. Done!

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

What If We Color Edges Of K_5 ?

What If We Color Edges Of K_5 ?

This graph is not arbitrary. $SQ_5 = \{x^2 \pmod{5} : 0 \le x \le 4\} = \{0, 1, 4\}.$ \blacktriangleright If $i - j \in SQ_5$ then **RED**. \blacktriangleright If $i - j \notin SQ_5$ then **BLUE**.

What If We Color Edges Of K_5 ?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

This graph is not arbitrary. $SQ_5 = \{x^2 \pmod{5} : 0 \le x \le 4\} = \{0, 1, 4\}.$ \blacktriangleright If $i - j \in SQ_5$ then **RED**. \blacktriangleright If $i - j \notin SQ_5$ then **BLUE**.

Two ways to show no mono \triangle s on next slide.

くして 山田 ふぼとくば くちょう

Need to show there are no mono \triangle .

Need to show there are no mono \triangle .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Method 1

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$.

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$.

ション ふぼう メリン メリン しょうくしゃ

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof.

ション ふぼう メリン メリン しょうくしゃ

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

ション ふぼう メリン メリン しょうくしゃ

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ_5 so unlikely to generalies.

ション ふぼう メリン メリン しょうくしゃ

Method 2 All \equiv are mod 5.

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2, b - c \equiv y^2, c - a \equiv z^2$.

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ_5 so unlikely to generazlies.

Method 2 All \equiv are mod 5. 1) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2, b - c \equiv y^2, c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$.

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2, b - c \equiv y^2, c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0.

No Mono 🛆s

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

Method 2 All \equiv are mod 5.

1) Assume *a*, *b*, *c* form a \triangle . Then a - b, b - c, $c - a \in SQ_5$. $a - b \equiv x^2$, $b - c \equiv y^2$, $c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0. 2) Assume *a*, *b*, *c* form a \triangle . Then a - b, b - c, $c - a \notin SQ_5$. For all *p*, product of 2 nonsquares mod *p* is in SQ_p (HW). $2 \notin SQ_5$ so $2(a - b) = x^2$, $2(b - c) = y^2$, $2(c - a) = z^2$.
No Mono 🛆s

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2, b - c \equiv y^2, c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0. 2) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \notin SQ_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin SQ_5$ so $2(a - b) = x^2, 2(b - c) = y^2, 2(c - a) = z^2$. $2(x^2 + y^2 + z^2) \equiv 0$.

No Mono $\triangle s$

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form a \triangle . Then a - b, b - c, $c - a \in SQ_5$. $a - b \equiv x^2$, $b - c \equiv y^2$, $c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0. 2) Assume a, b, c form a \triangle . Then a - b, b - c, $c - a \notin SQ_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin SQ_5$ so $2(a - b) = x^2$, $2(b - c) = y^2$, $2(c - a) = z^2$. $2(x^2 + y^2 + z^2) \equiv 0$. Divide by 2 (mult by 3) to get $x^2 + y^2 + z^2 \equiv 0$ which implies x = y = z.

No Mono $\triangle s$

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0, 1). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0, 2). No x with $\text{COL}(0, x) = \text{COL}(0, 1) = \mathbf{B}$. **PRO** Easy Proof. **CON** didn't use SQ₅ so unlikely to generalies.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form $a \triangle$. Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2, b - c \equiv y^2, c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0. 2) Assume a, b, c form $a \triangle$. Then $a - b, b - c, c - a \notin SQ_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin SQ_5$ so $2(a - b) = x^2, 2(b - c) = y^2, 2(c - a) = z^2$. $2(x^2 + y^2 + z^2) \equiv 0$. Divide by 2 (mult by 3) to get $x^2 + y^2 + z^2 \equiv 0$ which implies x = y = z. **UPSHOT** R(3,3) = 6.

Asymmetric Ramsey Numbers

Definition Let $a, b \ge 2$. R(a, b) is least n such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1.
$$R(a, b) = R(b, a)$$
.

2.
$$R(2, b) = b$$

3.
$$R(a,2) = a$$

Asymmetric Ramsey Numbers

Definition Let $a, b \ge 2$. R(a, b) is least n such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1.
$$R(a, b) = R(b, a)$$
.

2.
$$R(2, b) = b$$

3.
$$R(a,2) = a$$

Proof left to the reader, but its easy.

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → のへで

Theorem
$$R(a, b) \le R(a - 1, b) + R(a, b - 1)$$

Let $n = R(a - 1, b) + R(a, b - 1)$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ 白 ・ うへで

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let n = R(a - 1, b) + R(a, b - 1). Assume you have a coloring of the edges of K_n .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let n = R(a - 1, b) + R(a, b - 1). Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides.

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let n = R(a - 1, b) + R(a, b - 1). Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let n = R(a - 1, b) + R(a, b - 1). Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

1. There is a vertex with large **Red** Deg.

Theorem $R(a,b) \le R(a-1,b) + R(a,b-1)$ Let n = R(a-1,b) + R(a,b-1). Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

- 1. There is a vertex with large **Red** Deg.
- 2. There is a vertex with large **Blue** Deg.

Theorem $R(a,b) \le R(a-1,b) + R(a,b-1)$ Let n = R(a-1,b) + R(a,b-1). Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

- 1. There is a vertex with large **Red** Deg.
- 2. There is a vertex with large **Blue** Deg.
- 3. All verts have small **Red** degree and small **Blue** degree.

Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)].$

Case 1
$$(\exists v)[\deg_R(v) \ge R(a-1,b)].$$

Let $m = R(a-1,b).$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Case 1.2 There is a **Blue** K_b in $\{1, \ldots, m\}$. DONE.

Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Case 1.2 There is a **Blue** K_b in $\{1, \ldots, m\}$. DONE. **Case 1.3** Neither. **Impossible** since m = R(a - 1, b).

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b-1)].$

Case 2
$$(\exists v)[\deg_B(v) \ge R(a, b-1)].$$

Let $m = R(a, b-1).$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

with vertex v is a **Blue** K_b .

Case 2 $(\exists v)$ [deg_B $(v) \ge R(a, b-1)$]. Let m = R(a, b - 1). v 2 3 4 m . . . **Case 2.1** There is a **Red** K_a in $\{1, \ldots, m\}$. DONE **Case 2.2** There is a **Blue** K_{b-1} in $\{1, \ldots, m\}$. This set together with vertex v is a **Blue** K_{h} . **Case 2.3** Neither. **Impossible** since m = R(a, b-1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Case 3 Negate Case 1 and Case 2:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 3 Negate Case 1 and Case 2: 1. $(\forall v)[\deg_R(v) \le R(a-1,b)-1]$ and

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Case 3 Negate Case 1 and Case 2: 1. $(\forall v)[\deg_R(v) \le R(a-1,b)-1]$ and 2. $(\forall v)[\deg_B(v) \le R(a,b-1)-1]$

Case 3 Negate Case 1 and Case 2:
1.
$$(\forall v)[\deg_R(v) \le R(a-1,b)-1]$$
 and
2. $(\forall v)[\deg_B(v) \le R(a,b-1)-1]$
Hence

$$(\forall v)[\deg(v) \leq R(a-1,b) + R(a,b-1) - 2 = n-2]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case 3 Negate Case 1 and Case 2:
1.
$$(\forall v)[\deg_R(v) \le R(a-1,b)-1]$$
 and
2. $(\forall v)[\deg_B(v) \le R(a,b-1)-1]$
Hence

$$(\forall v)[\deg(v) \le R(a-1,b) + R(a,b-1) - 2 = n-2]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Not possible since every vertex of K_n has degree n - 1.

・ロト・西ト・ヨト・ヨト・ヨー りへぐ

▶ $R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

R(3,3) ≤ R(2,3) + R(3,2) ≤ 3 + 3 = 6
 R(3,4) ≤ R(2,4) + R(3,3) ≤ 4 + 6 = 10

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- ▶ $R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$
- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

▶
$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$$

- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- ▶ $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

▶
$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$$

- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- ▶ $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- ▶ $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- ▶ $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$
- ▶ $R(4,5) \le R(3,5) + R(4,4) \le 15 + 20 = 35$

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- ▶ $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$
- ▶ $R(4,5) \le R(3,5) + R(4,4) \le 15 + 20 = 35$
- ▶ $R(5,5) \le R(4,5) + R(5,4) \le 35 + 35 = 70.$

R(a, b)	Bound on $R(a, b)$
R(3,3)	6
<i>R</i> (3, 4)	10
R(3,5)	15
<i>R</i> (3,6)	21
R(3,7)	28
R(4, 4)	20
R(4,5)	35
R(5,5)	70

R(a, b)	Bound on $R(a, b)$
R(3,3)	6
<i>R</i> (3, 4)	10
R(3,5)	15
R(3, 6)	21
R(3,7)	28
R(4, 4)	20
R(4,5)	35
R(5,5)	70

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Can we make some improvements to this?

R(a, b)	Bound on $R(a, b)$
R(3,3)	6
<i>R</i> (3, 4)	10
R(3,5)	15
R(3, 6)	21
<i>R</i> (3,7)	28
R(4, 4)	20
R(4,5)	35
R(5,5)	70

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Can we make some improvements to this? YES!

R(a, b)	Bound on $R(a, b)$
R(3,3)	6
<i>R</i> (3, 4)	10
R(3,5)	15
R(3, 6)	21
<i>R</i> (3,7)	28
R(4, 4)	20
R(4, 5)	35
R(5,5)	70

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Can we make some improvements to this? YES! We need a theorem.

R(a, b)	Bound on $R(a, b)$
R(3,3)	6
<i>R</i> (3, 4)	10
R(3,5)	15
R(3, 6)	21
R(3,7)	28
R(4, 4)	20
R(4,5)	35
R(5,5)	70

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Can we make some improvements to this? YES! We need a theorem. We first do an example.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges. Every vertex contributes 3 to the number of edges. So there are $9 \times 3 = 27$ edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges. Every vertex contributes 3 to the number of edges. So there are $9 \times 3 = 27$ edges. **Oh**. We overcounted.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice. **Oh My!** That means there are $\frac{27}{2}$ edges.

ション ふゆ アメリア メリア しょうくしゃ

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice. **Oh My!** That means there are $\frac{27}{2}$ edges. Contradiction.

ション ふゆ アメリア メリア しょうくしゃ

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice. **Oh My!** That means there are $\frac{27}{2}$ edges. Contradiction. We generalize this on the next slide.

ション ふゆ アメリア メリア しょうくしゃ

Lemma Let G = (V, E) be a graph.

・ロト ・ 理ト ・ ヨト ・ ヨー・ つへぐ

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$

 $V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$

・ロト ・ 理ト ・ ヨト ・ ヨー・ つへぐ

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$
$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

$$\sum_{\nu \in V_{\text{even}}} \deg(\nu) + \sum_{\nu \in V_{\text{odd}}} \deg(\nu) = \sum_{\nu \in V} \deg(\nu) = 2|E| \equiv 0 \pmod{2}.$$
$$\sum_{\nu \in V_{\text{odd}}} \deg(\nu) \equiv 0 \pmod{2}.$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|\mathit{V}_{\rm odd}| \equiv 0 \pmod{2}.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$
$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$. Handshake Lemma If all pairs of people in a room shake hands,

even number of shakes.

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$
$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{odd}| \equiv 0 \pmod{2}$. Handshake Lemma If all pairs of people in a room shake hands, even number of shakes. (Pre-COVID when people shook hands.)

Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.

And NOW to our improvements on small Ramsey numbers.

Assume we have a 2-coloring of the edges of K_9 .

Assume we have a 2-coloring of the edges of K_9 . Case 1 $(\exists v)[\deg_R(v) \ge 4]$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

1) If any of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$ are **RED**, have **RED** K_3 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

1) If any of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$ are **RED**, have **RED** K_3 .

2) If all of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$ are **BLUE**, have **BLUE** K_4 .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

(1) There is a **RED** K_3 in $\{1, 2, 3, 4, 5, 6\}$. Have **RED** K_3 .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

(2) There is a **BLUE** K_3 . With v get a **BLUE** K_4 .

Recall

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 目 ● の Q @

Recall Case 1 $(\exists v)[\deg_R(v) \ge 4]$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall **Case 1** $(\exists v)[\deg_R(v) \ge 4]$. **Case 2** $(\exists v)[\deg_R(v) \le 2]$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Recall **Case 1** $(\exists v)[\deg_R(v) \ge 4]$. **Case 2** $(\exists v)[\deg_R(v) \le 2]$. Negation of Case 1 and Case 2 yields

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Recall **Case 1** $(\exists v)[\deg_R(v) \ge 4]$. **Case 2** $(\exists v)[\deg_R(v) \le 2]$. Negation of Case 1 and Case 2 yields **Case 3** $(\forall v)[\deg_R(v) = 3]$.

Recall

Case 1 $(\exists v)[\deg_R(v) \ge 4]$. Case 2 $(\exists v)[\deg_R(v) \le 2]$. Negation of Case 1 and Case 2 yields Case 3 $(\forall v)[\deg_R(v) = 3]$. SO the RED graph is a graph on 9 verts with all verts of degree 3.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall **Case 1** $(\exists v)[\deg_R(v) \ge 4]$. **Case 2** $(\exists v)[\deg_R(v) \le 2]$. Negation of Case 1 and Case 2 yields **Case 3** $(\forall v)[\deg_R(v) = 3]$. SO the **RED** graph is a graph on 9 verts with all verts of degree 3. This is impactible.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

This is impossible!

What was it about R(3,4) that made that trick work?

(ロト (個) (E) (E) (E) (E) のへの

What was it about R(3, 4) that made that trick work? We originally had

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

What was it about R(3, 4) that made that trick work? We originally had

$$R(3,4) \leq R(2,4) + R(3,3) \leq 4+6 \leq 10$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

What was it about R(3, 4) that made that trick work? We originally had

 $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$

Key: R(2,4) and R(3,3) were both even!

What was it about R(3, 4) that made that trick work? We originally had

 $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$

Key: R(2,4) and R(3,3) were both even! Theorem $R(a,b) \le$

1.
$$R(a, b - 1) + R(a - 1, b)$$
 always.

2.
$$R(a, b-1) + R(a-1, b) - 1$$
 if
 $R(a, b-1) \equiv R(a-1, b) \equiv 0 \pmod{2}$

What was it about R(3, 4) that made that trick work? We originally had

 $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$

ション ふゆ アメビア メロア しょうくしゃ

Key: R(2,4) and R(3,3) were both even! Theorem $R(a,b) \leq$

1.
$$R(a, b - 1) + R(a - 1, b)$$
 always.

2.
$$R(a, b-1) + R(a-1, b) - 1$$
 if
 $R(a, b-1) \equiv R(a-1, b) \equiv 0 \pmod{2}$

Proof left to the Reader.

Some Better Upper Bounds

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6.$$

- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 1 = 9.$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- ► $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- ▶ $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$

• $R(5,5) \le R(4,5) + R(5,4) = 62.$

Some Better Upper Bounds

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6.$$

▶
$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 - 1 = 9.$$

- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- ► $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- ▶ $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$

• $R(5,5) \le R(4,5) + R(5,4) = 62.$

Are these tight?

Some Better Upper Bounds

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6.$$

▶
$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 - 1 = 9.$$

- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- ► $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- ▶ $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$

• $R(5,5) \le R(4,5) + R(5,4) = 62.$

Are these tight? Some yes, some no.

$R(\mathbf{3},\mathbf{3}) \geq \mathbf{6}$

くして 山田 ふぼとくば くちょう

R(3,3) = 6 as shown in prior slide.

R(4,4) = 18

$R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

R(4,4) = 18

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

R(4,4) = 18

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use $COL(a, b) = \text{RED} \text{ if } a - b \in SQ_{17}, \text{ BLUE OW.}$

・ロト・日本・モト・モト・モー うへぐ

R(4,4) = 18

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

```
Vertices are \{0, \ldots, 16\}.
```

Use COL(a, b) = RED if $a - b \in SQ_{17}$, BLUE OW.

Same idea as above for K_5 , but more cases for algebra. UPSHOT R(4,4) = 18 and the coloring used math of interest!

ション ふゆ アメビア メロア しょうくしゃ

$R(3,5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 . Vertices are $\{0, \ldots, 13\}$.

・ロト・日本・モト・モト・モー うへぐ

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = \text{RED} \text{ if } a - b \equiv \text{CUBE}_{14}, \text{ BLUE OW}.$

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = \text{RED} \text{ if } a - b \equiv \text{CUBE}_{14}, \text{ BLUE OW}.$

Same idea as above for K_5 , but more cases for the algebra.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = \text{RED} \text{ if } a - b \equiv \text{CUBE}_{14}, \text{ BLUE OW}.$

Same idea as above for K_5 , but more cases for the algebra.

UPSHOT R(3,5) = 14 and the coloring used math of interest!

This is a subgraph of the R(3,5) graph

R(3,4) = 9

This is a subgraph of the R(3,5) graph

UPSHOT R(3,4) = 9 and the coloring used math of interest!

・ロト・日本・ビー・ ビー・ ひくぐ

Good news R(4,5) = 25.

Good news R(4,5) = 25.

Bad news

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Good news R(4,5) = 25.

Bad news THATS IT.

Good news
$$R(4,5) = 25$$
.

Bad news THATS IT. No other R(a, b) are known using NICE methods.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Summary of Bounds

R(a, b)	Old Bound	New Bound	Opt	Int?
<i>R</i> (3, 3)	6	6	6	Y
<i>R</i> (3, 4)	10	9	9	Y
<i>R</i> (3,5)	15	14	14	Y
<i>R</i> (3,6)	21	19	18	Lower-Y
<i>R</i> (3,7)	28	27	23	Lower-Y
<i>R</i> (4, 4)	20	18	18	Y
<i>R</i> (4,5)	35	31	25	N
R(5,5)	70	62	\leq 46	Ν

Summary of Bounds

R(a, b)	Old Bound	New Bound	Opt	Int?
<i>R</i> (3, 3)	6	6	6	Y
<i>R</i> (3, 4)	10	9	9	Y
<i>R</i> (3,5)	15	14	14	Y
R(3, 6)	21	19	18	Lower-Y
<i>R</i> (3,7)	28	27	23	Lower-Y
<i>R</i> (4, 4)	20	18	18	Y
<i>R</i> (4,5)	35	31	25	N
R(5,5)	70	62	\leq 46	N

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

R(5,5): See the assigned paper for more on this.

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ
Moral of the Story

 At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

*ロ * * ● * * ● * * ● * ● * ● * ●

Moral of the Story

- At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
- Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.

ション ふぼう メリン メリン しょうくしゃ