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The First Theorem in Ramsey Theory

Thm For all COL :
([6]
2

)
→ [2] there exists a homog set of size 3.



Focus on Vertex 1

Given a 2-coloring of the edges of K6 we look at vertex 1.

2 3 4 5 6

1

There are 5 edges coming out of vertex 1.
They are 2 colored.
∃ 3 edges from vertex 1 that are the same color.
We can assume (1, 2), (1, 3), (1, 4) are all RED.
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(1,2), (1,3), (1,4) are RED
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We Look Just at Vertices 1,2,3,4

2 3 4

1

If (2, 3) is RED then get RED Triangle. So assume (2,3) is BLUE.
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(2,3) is BLUE
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If (3,4) is RED then get RED triangle. So assume (3,4) is BLUE.



(2,3) is BLUE
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If (3,4) is RED then get RED triangle. So assume (3,4) is BLUE.
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If (3,4) is RED then get RED triangle. So assume (3,4) is BLUE.
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If (2,4) is RED then get RED triangle. So assume (2,4) is BLUE.
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If (2,4) is RED then get RED triangle. So assume (2,4) is BLUE.



(2,4) is BLUE
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Note that there is a BLUE triangle with verts 2, 3, 4. Done!



(2,4) is BLUE

2 3 4

1

Note that there is a BLUE triangle with verts 2, 3, 4. Done!
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What If We Color Edges Of K5?

0

1

23

4

This graph is not arbitrary.
SQ5 = {x2 (mod 5) : 0 ≤ x ≤ 4} = {0, 1, 4}.
I If i − j ∈ SQ5 then RED.

I If i − j /∈ SQ5 then BLUE.

Two ways to show no mono 4s on next slide.
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No Mono 4s

Need to show there are no mono 4.

Method 1
The R edges are all symmeric so if there is a 4 edge can assume
one of the edges is (0, 1). No x with COL(0, x) = COL(0, 1) = R.
The B edges are all symmeric so if there is a 4 can assume one of
the edges is (0, 2). No x with COL(0, x) = COL(0, 1) = B.
PRO Easy Proof. CON didn’t use SQ5 so unlikely to generazlies.

Method 2 All ≡ are mod 5.
1) Assume a, b, c form a 4. Then a− b, b − c , c − a ∈ SQ5.
a− b ≡ x2, b − c ≡ y2, c − a ≡ z2.
x2 + y2 + z2 ≡ 0. Can show this implies x = y = z = 0.
2) Assume a, b, c form a 4. Then a− b, b − c , c − a /∈ SQ5. For
all p, product of 2 nonsquares mod p is in SQp (HW). 2 /∈ SQ5 so
2(a− b) = x2, 2(b − c) = y2, 2(c − a) = z2.
2(x2 + y2 + z2) ≡ 0. Divide by 2 (mult by 3) to get
x2 + y2 + z2 ≡ 0 which implies x = y = z .
UPSHOT R(3, 3) = 6.
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Asymmetric Ramsey Numbers

Definition Let a, b ≥ 2. R(a, b) is least n such that for all
2-colorings of Kn there is either a red Ka or a blue Kb.

1. R(a, b) = R(b, a).

2. R(2, b) = b

3. R(a, 2) = a

Proof left to the reader, but its easy.
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R(a,b) ≤ R(a − 1,b) + R(a,b − 1)

Theorem R(a, b) ≤ R(a− 1, b) + R(a, b − 1)

Let n = R(a− 1, b) + R(a, b − 1).
Assume you have a coloring of the edges of Kn.
The proof has three cases on the next three slides.
They will be

1. There is a vertex with large Red Deg.

2. There is a vertex with large Blue Deg.

3. All verts have small Red degree and small Blue degree.
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All Verts: Small Red Deg and Small Blue Deg

Case 3 Negate Case 1 and Case 2:
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Lets Compute Bounds on R(a,b)

I R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6

I R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 = 10
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I R(3, 7) ≤ R(2, 7) + R(3, 6) ≤ 7 + 21 = 28

I R(4, 4) ≤ R(3, 4) + R(4, 3) ≤ 10 + 10 = 20

I R(4, 5) ≤ R(3, 5) + R(4, 4) ≤ 15 + 20 = 35

I R(5, 5) ≤ R(4, 5) + R(5, 4) ≤ 35 + 35 = 70.
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R(a, b) Bound on R(a, b)
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R(3, 4) 10
R(3, 5) 15
R(3, 6) 21
R(3, 7) 28
R(4, 4) 20
R(4, 5) 35
R(5, 5) 70

Can we make some improvements to this? YES!
We need a theorem. We first do an example.
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A Graph on 9 Vertices with all verts Deg 3?

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are 9× 3 = 27 edges.
Oh. We overcounted. We counted every edge exactly twice.
Oh My! That means there are 27

2 edges. Contradiction.
We generalize this on the next slide.
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Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)
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Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every
vertex is of odd degree.

And NOW to our improvements on small Ramsey numbers.
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R(3, 4) ≤ 9 Case 1

Assume we have a 2-coloring of the edges of K9.

Case 1 (∃v)[degR(v) ≥ 4].

1 2 3 4

v

1) If any of {1, 2},{1,3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} are RED,
have RED K3.

2) If all of {1, 2},{1,3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} are BLUE,
have BLUE K4.
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Case 2 (∃v)[degR(v) ≤ 2], so degB(v) ≥ 6.
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v

(1) There is a RED K3 in {1, 2, 3, 4, 5, 6}. Have RED K3.

(2) There is a BLUE K3. With v get a BLUE K4.
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Recall

Case 1 (∃v)[degR(v) ≥ 4].

Case 2 (∃v)[degR(v) ≤ 2].

Negation of Case 1 and Case 2 yields

Case 3 (∀v)[degR(v) = 3].
SO the RED graph is a graph on 9 verts with all verts of degree 3.
This is impossible!
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A Generalization of this Trick

What was it about R(3, 4) that made that trick work?

We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.



Some Better Upper Bounds

I R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6.

I R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6− 1 = 9.

I R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 9 = 14.

I R(3, 6) ≤ R(2, 6) + R(3, 5) ≤ 6 + 14− 1 = 19.

I R(3, 7) ≤ R(2, 7) + R(3, 6) ≤ 7 + 19 = 26

I R(4, 4) ≤ R(3, 4) + R(4, 3) ≤ 9 + 9 = 18.

I R(4, 5) ≤ R(3, 5) + R(4, 4) ≤ 14 + 18− 1 = 31.

I R(5, 5) ≤ R(4, 5) + R(5, 4) = 62.

Are these tight? Some yes, some no.
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R(3, 3) ≥ 6

R(3, 3) = 6 as shown in prior slide.
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R(4, 4) = 18

R(4, 4) ≥ 18: Need coloring of K17 w/o mono K4.

Vertices are {0, . . . , 16}.

Use
COL(a, b) = RED if a− b ∈ SQ17, BLUE OW.

Same idea as above for K5, but more cases for algebra.
UPSHOT R(4, 4) = 18 and the coloring used math of interest!
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R(3, 5) ≥ 14: Need coloring of K13 w/o RED K3 or BLUE K5.

Vertices are {0, . . . , 13}.

Use
COL(a, b) = RED if a− b ≡ CUBE14, BLUE OW.

Same idea as above for K5, but more cases for the algebra.

UPSHOT R(3, 5) = 14 and the coloring used math of interest!
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Can we extend these Patterns?

Good news R(4, 5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.
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Summary of Bounds

R(a, b) Old Bound New Bound Opt Int?

R(3, 3) 6 6 6 Y
R(3, 4) 10 9 9 Y
R(3, 5) 15 14 14 Y
R(3, 6) 21 19 18 Lower-Y
R(3, 7) 28 27 23 Lower-Y
R(4, 4) 20 18 18 Y
R(4, 5) 35 31 25 N
R(5, 5) 70 62 ≤ 46 N

R(5, 5): See the assigned paper for more on this.
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Moral of the Story

1. At first there seemed to be interesting mathematics with
mods and primes leading to nice graphs.

(Joel Spencer) The Law of Small Numbers: Patterns that
persist for small numbers will vanish when the calculations
get to hard.

2. Seemed like a nice Math problem that would involve
interesting and perhaps deep mathematics. No. The work on
it is interesting and clever, but (1) the math is not deep, and
(2) progress is slow.
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