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Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We define graphs and complete graphs and state this theorem in
those terms.
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Graphs and Complete Graphs

Def A Graph G = (V ,E ) is a set V and a set of unordered pairs
from V , called edges. These can easily be drawn.

Example

2 3 4 5 6

1

V = {1, 2, 3, 4, 5, 6}.
E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}.
Def The degree (deg) of a vertex is how many edges use it.
In the above graph deg(1) = 5 and
deg(2) = deg(3) = deg(4) = deg(5) = deg(6) = 1.
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Complete Graphs

Def The Complete Graph on n Vertices, denoted Kn, is
V = {1, . . . , n} and E is all possible edges.

Example

2 3 4

1

This graph is K4.
Note Every vertex of Kn has degree n − 1.
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More Notation

Below is standard notation which you may or may not have seen.

Thats a tautology!
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I ∃ means there exists

I ∀ means for all
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One More Definition

Def Let G = (V ,E ) be a graph. Let U ⊆ V .

1. U is a Clique if all of the verts in U have an edge between
them.

2. If |U| = k then we may call U a k-clique.

3. If the edges of G are 2-colored with RED and BLUE, and all
of the edges between verts of U are RED then we call U a
Red Clique. Similar for Blue.

4. If I formed a rock band it would be called
Bill Gasarch and the Red Cliques!
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The First Theorem, Restated

For every 2-coloring of the edges of K6 there is a
monochromatic K3 (triangle).

We could state that as
∀ 2-coloring of the edges of K6 ∃ a monochromatic K3

(triangle).

We could state that as
∀ 2-coloring of the edges of K6 ∃ a monochromatic 3-clique
(triangle).

We prove this in the next few slides.
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Focus on Vertex 1

Given a 2-coloring of the edges of K6 we look at vertex 1.

2 3 4 5 6

1

There are 5 edges coming out of vertex 1.
They are 2 colored.
∃ 3 edges from vertex 1 that are the same color.
We can assume (1, 2), (1, 3), (1, 4) are all RED.
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(1,2), (1,3), (1,4) are RED

2 3 4 5 6

1



We Look Just at Vertices 1,2,3,4

2 3 4

1

If (2, 3) is RED then get RED Triangle. So assume (2,3) is BLUE.
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(2,4) is BLUE

2 3 4

1

Note that there is a BLUE triangle with verts 2, 3, 4. Done!
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What if we color edges of K5?

0

1

23

4

This graph is not arbitrary.
SQ5 = {x2 (mod 5) : 0 ≤ x ≤ 4} = {0, 1, 4}.
I If i − j ∈ SQ5 then RED.

I If i − j /∈ SQ5 then BLUE.
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Asymmetric Ramsey Numbers

Definition R(a, b) is least n such that for all 2-colorings of Kn

there is either a red Ka or a blue Kb.

1. R(a, b) = R(b, a).

2. R(2, b) = b

3. R(a, 2) = a

Proof left to the reader, but its easy.
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R(a,b) ≤ R(a − 1,b) + R(a,b − 1)

Theorem R(a, b) ≤ R(a− 1, b) + R(a, b − 1)

Let n = R(a− 1, b) + R(a, b − 1).
Assume you have a coloring of the edges of Kn.
The proof has three cases on the next three slides.
They will be

1. There is a vertex with large Red Deg.

2. There is a vertex with large Blue Deg.

3. All verts have small Red degree and small Blue degree.
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Some Vertex v Has Large Red Deg

Case 1 (∃v)[degR(v) ≥ R(a− 1, b)].

Let m = R(a− 1, b).

1 2 3 4 m

v

. . .

Case 1.1 There is a Red Ka−1 in {1, . . . ,m}. This set together
with vertex v is a Red Ka.
Case 1.2 There is a Blue Kb in {1, . . . ,m}. DONE.
Case 1.3 Neither. Impossible since m = R(a− 1, b).
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All Verts: Small Red Deg and Small Blue Deg

Case 3 Negate Case 1 and Case 2:

1. (∀v)[degR(v) ≤ R(a− 1, b)− 1] and

2. (∀v)[degB(v) ≤ R(a, b − 1)− 1]

Hence

(∀v)[deg(v) ≤ R(a− 1, b) + R(a, b − 1)− 2 = n − 2]

Not possible since every vertex of Kn has degree n − 1.
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Lets Compute Bounds on R(a,b)

I R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6

I R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 = 10

I R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 10 = 15

I R(3, 6) ≤ R(2, 6) + R(3, 5) ≤ 6 + 15 = 21

I R(3, 7) ≤ R(2, 7) + R(3, 6) ≤ 7 + 21 = 28

I R(4, 4) ≤ R(3, 4) + R(4, 3) ≤ 10 + 10 = 20

I R(4, 5) ≤ R(3, 5) + R(4, 4) ≤ 15 + 20 = 35

I R(5, 5) ≤ R(4, 5) + R(5, 4) ≤ 35 + 35 = 70.



Table of Bounds

R(a, b) Bound on R(a, b)

R(3, 3) 6
R(3, 4) 10
R(3, 5) 15
R(3, 6) 21
R(3, 7) 28
R(4, 4) 20
R(4, 5) 35
R(5, 5) 70

Can we make some improvements to this? YES!
We need a theorem. We first do an example.
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A Graph on 9 Vertices with all verts Deg 3?

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are 9× 3 = 27 edges.
Oh. We overcounted. We counted every edge exactly twice.
Oh My! That means there are 27

2 edges. Contradiction.
We generalize this on the next slide.
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Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).

Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes.

(Pre-COVID when people shook hands.)



Handshake Lemma

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
Handshake Lemma If all pairs of people in a room shake hands,
even number of shakes. (Pre-COVID when people shook hands.)



Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every
vertex is of odd degree.

And NOW to our improvements on small Ramsey numbers.
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R(3, 4) ≤ 9 Case 1

Assume we have a 2-coloring of the edges of K9.

Case 1 (∃v)[degR(v) ≥ 4].

1 2 3 4

v

1) If any of {1, 2},{1,3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} are RED,
have RED K3.

2) If all of {1, 2},{1,3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} are BLUE,
have BLUE K4.
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R(3, 4) ≤ 9 Case 2

Case 2 (∃v)[degR(v) ≤ 2], so degB(v) ≥ 6.

1 2 3 4 5 6

v

(1) There is a RED K3 in {1, 2, 3, 4, 5, 6}. Have RED K3.

(2) There is a BLUE K3. With v get a BLUE K4.
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R(3, 4) ≤ 9 Case 3

Recall

Case 1 (∃v)[degR(v) ≥ 4].

Case 2 (∃v)[degR(v) ≤ 2].

Negation of Case 1 and Case 2 yields

Case 3 (∀v)[degR(v) = 3].
SO the RED graph is a graph on 9 verts with all verts of degree 3.
This is impossible!
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A Generalization of this Trick

What was it about R(3, 4) that made that trick work?

We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)

Proof left to the Reader.
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Some Better Upper Bounds

I R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6.

I R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6− 1 = 9.

I R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 9 = 14.

I R(3, 6) ≤ R(2, 6) + R(3, 5) ≤ 6 + 14− 1 = 19.

I R(3, 7) ≤ R(2, 7) + R(3, 6) ≤ 7 + 19 = 26

I R(4, 4) ≤ R(3, 4) + R(4, 3) ≤ 9 + 9 = 18.

I R(4, 5) ≤ R(3, 5) + R(4, 4) ≤ 14 + 18− 1 = 31.

I R(5, 5) ≤ R(4, 5) + R(5, 4) = 62.

Are these tight? Some yes, some no.
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R(3, 3) ≥ 6

R(3, 3) ≥ 6: Need coloring of K5 w/o mono K3.

Vertices are {0, 1, 2, 3, 4}.

COL(a, b) = RED if a− b ≡ SQ (mod 5), BLUE OW.

Note −1 = 22 (mod 5). Hence a− b ∈ SQ iff b− a ∈ SQ. So the
coloring is well defined.
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R(3, 3) ≥ 6

COL(a, b) = RED if a− b ≡ SQ (mod 5), BLUE OW.

I Squares mod 5: 1,4.

I If there is a RED triangle then a− b, b − c , c − a all SQ’s.
SUM is 0. So

x2 + y2 + z2 ≡ 0 (mod 5) Can show impossible

I If there is a BLUE triangle then a− b, b − c, c − a all
non-SQ’s. Product of nonsq’s is a sq. So
2(a− b), 2(b − c), 2(c − a) all squares. SUM to zero- same
proof.

UPSHOT R(3, 3) = 6 and the coloring used math of interest!



R(4, 4) = 18

R(4, 4) ≥ 18: Need coloring of K17 w/o mono K4.

Vertices are {0, . . . , 16}.

Use
COL(a, b) = RED if a− b ≡ SQ (mod 17), BLUE OW.

Same idea as above for K5, but more cases.
UPSHOT R(4, 4) = 18 and the coloring used math of interest!
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R(3, 5) = 14

R(3, 5) ≥ 14: Need coloring of K13 w/o RED K3 or BLUE K5.

Vertices are {0, . . . , 13}.
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COL(a, b) = RED if a− b ≡ CUBE (mod 14), BLUE OW.

Same idea as above for K5, but more cases.

UPSHOT R(3, 5) = 14 and the coloring used math of interest!
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R(3, 4) = 9

This is a subgraph of the R(3, 5) graph

UPSHOT R(3, 4) = 9 and the coloring used math of interest!
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Can we extend these Patterns?

Good news R(4, 5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.
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Summary of Bounds

R(a, b) Old Bound New Bound Opt Int?

R(3, 3) 6 6 6 Y
R(3, 4) 10 9 9 Y
R(3, 5) 15 14 14 Y
R(3, 6) 21 19 18 Lower-Y
R(3, 7) 28 27 23 Lower-Y
R(4, 4) 20 18 18 Y
R(4, 5) 35 31 25 N
R(5, 5) 70 62 ?? ??

R(5, 5): 43 ≤ R(5, 5) ≤ 49. So far not mathematically interesting.
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Moral of the Story

1. At first there seemed to be interesting mathematics with
mods and primes leading to nice graphs.

(Joel Spencer) The Law of Small Numbers: Patterns that
persist for small numbers will vanish when the calculations
get to hard.

2. Seemed like a nice Math problem that would involve
interesting and perhaps deep mathematics. No. The work on
it is interesting and clever, but (1) the math is not deep, and
(2) progress is slow.
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When Will We Know R(5, 5)

1. (Quote from Joel Spencer): Erdos asks us to imagine an alien
force, vastly more powerful than us, landing on Earth and
demanding the value of R(5, 5) or they will destroy our planet.
In that case, he claims, we should marshal all our computers
and all our mathematicians and attempt to find the value.
But suppose, instead, that they ask for R(6, 6). In that case,
he believes, we should attempt to destroy the aliens.

2. I asked Stanislaw Radziszowski, the worlds leading authority
on Small Ramsey Numbers, what R(5, 5) is and when we
would know it. He said
R(5) = 43, and
we will never know it.
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