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The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.

What can a sentence express?
Example

(∃x)(∀y)[x 6= y =⇒ E (x , y)]

There is a vertex x that has an edge to EVERY other vertex.

For all n ≥ 1 there is G with n vertex that satisfies this sentence.

Example

(∃x1, x2)(∀y)[(y 6= x1 ∧ y 6= x2) =⇒ (E (x1, y) ∧ ¬E (x2, y)]

There is x1, x2 st x1 connects to every vertex (except x2), and x2
connects to NO other vertex.
For all n ≥ 2 there is G with n vertex that satisfies this sentence.
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Conventions

1. The graphs are symmetric. So E (x , y) really means
E (x , y) ∧ E (y , x).

2. No self loops, so E (x , x) is always false.

3. (∃x1) · · · (∃xn) means they are DISTINCT.

4. (∀x1) · · · (∀xn) means they are DISTINCT.
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Spectrum of a Sentence

Notation If G is a graph and φ is a sentence then G |= φ means
that φ is TRUE of G .

Definition If φ is a sentence in the language of graphs then
spec(φ) is the set of all n such that there is G on n vertices such
that G |= φ.
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Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)]

Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)] Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)] Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)] Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)] Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)] Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∃x1, x2, x3)[E (x1, x2) ∧ E (x1, x3)] Discuss

(∃G on 0 vertices)[G |= φ]? NO.

(∃G on 1 vertices)[G |= φ]? NO.

(∃G on 2 vertices)[G |= φ]? NO.

(∀n ≥ 3)(∃G on n vertices)[G |= φ]. YES.

spec(φ) = {3, 4, 5, . . .}



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]]

Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]?

YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]?

NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]?

YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]?

NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Examples

φ = (∀x)(∃y 6= x)[E (x , y) ∧ (∀z 6= y)[¬E (x , z)]] Discuss

(∃G on 0 vertices)[G |= φ]? YES- vacuously.

(∃G on 1 vertices)[G |= φ]? NO. Discuss.

(∃G on 2 vertices)[G |= φ]? YES. Discuss.

(∃G on 3 vertices)[G |= φ]? NO. Discuss.

spec(φ) = {0, 2, 4, 6, . . . , }



Spectrum: Another Example

(∀x1, x2, x3)
[
¬(E (x1, x2) ∧ E (x1, x3) ∧ E (x2, x3))

∧
¬(¬E (x1, x2) ∧ ¬E (x1, x3) ∧ ¬E (x2, x3))
]
Discuss

This is asking for a graph without a 3-clique or 3-ind set.
Since R(3) = 6 we know that
spec(φ) = {0, 1, 2, 3, 4, 5}.
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φ = (∀x)(∀y)[E (x , y)].

Discuss.

(∀n ∈ N)[Kn |= φ].

spec(φ) = N.

φ = (∃x , y , z)(∀w /∈ {x , y , z})[E (w , x) ∧ E (w , y) ∧ E (w , z)].
Discuss.

(∀n ∈ N)[Kn,3 |= φ].

spec(φ) = {3, 4, 5, . . . , }.
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What is spec? Discuss.
spec(φ) = {2}.
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Note how Simple Those Spectrum’s Were

φ = (∀x)(∀y)[E (x , y)].
spec(φ) = N.

φ = (∃x , y , z)(∀w /∈ {x , y , z})[E (w , x) ∧ E (w , y) ∧ E (w , z)].
spec(φ) = {3, 4, 5, . . . , }.

φ = (∃x1)(∃x2)(∀y)[x1 = y ∨ x2 = y ].
spec(φ) = {2}.

All of these sentence were of the form (∃∗∀∗).
(∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, y . . . , ym)]

All of these sentence spec was finite or cofinite.Coincidence?
Or is there a Theorem? Does the proof Use Ramsey Theory?
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Lemma About Decidable We Need

Lemma

1. The following is decidable: Given a sentence φ and a graph G ,
determine if G |= φ.

2. The following is decidable: Given a sentence φ and a number
n, determine if n ∈ spec(φ).

Proof Use brute force.
We will use Lemma without comment.

Note For many (φ,G ) can do much better than brute force.
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Main Theorem

Theorem The following function is computable: Given φ, an ∃∗∀∗
sentence in the theory of graphs, output spec(φ). (spec(φ) will be
a finite or cofinite set; hence it will have an easy description.)

We will take

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]
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Claim 1

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

Let G |= φ with witnesses v1, . . . , vn. Let H be an induced
subgraph of G that contains v1, . . . , vn. Then H |= φ.

Proof of Claim 1 Let G = (V ,E ) and H = (V ′,E ′) where
V ′ ⊆ V . Since G |= φ

G |= (∀y1 ∈ V ) · · · (∀ym ∈ V )[ψ(v1, . . . , vn, y1, . . . , ym)]

H is just G with less vertices, and the vertices that remain have
the same edges. And v1, . . . , vn are in H. Hence we DO have

(∀y1 ∈ V ′) · · · (∀ym ∈ V ′)[ψ(v1, . . . , vn, y1, . . . , ym)], SO
H |= (∀y1) · · · (∀ym)[ψ(v1, . . . , vn, y1, . . . , ym)]
End of Proof of Claim 1
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Claim 2, The Main Claim

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

If (∃N ≥ n + 2nR(m))[N ∈ spec(φ)] then

{n + m, . . . , n + 2nR(m), . . .} ⊆ spec(φ).

Proof of Claim 2
Since N ∈ spec(φ) there exists G = (V ,E ), a graph on N vertices
such that G |= φ. Let v1, . . . , vn be such that:

(∀y1) · · · (∀ym)[ψ(v1, . . . , vn, y1, . . . , ym)].

(Proof continued on next slide)
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Proof of Claim 2 Continued

(∀y1) · · · (∀ym)[ψ(v1, . . . , vn, y1, . . . , ym)].

Let X = {v1, . . . , vn} and U = V − X .

Note that |U − X | ≥ 2nR(m). We use 2nR(m) elements of it
which we denote

u1, . . . , u2nR(m).

Picture on next slide.
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X and U − X

u1
u2
u3

…  
u2nR(m)

v1
v2
v3

…  

vn

X U-X



Proof of Claim 2 Cont: Pigeonhole

We define a 2n-Coloring of U. u ∈ U maps to (b1, . . . , bn):

bi =

{
0 if (u, vi ) /∈ E

1 if (u, vi ) ∈ E
(1)

Hence every u ∈ U is mapped to a description of how it relates to
every element in X . Since |U| ≥ 2nR(m) there exists R(m)
vertices,

{w1, . . . ,wR(m)}

that map to the same vector.
So they all look the same to U. (Picture on the next slide.)
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wi ’s Look the Same to U

w1
w2
w3

…  
wR(m)

v1
v2
v3

…  

vn

X P igeonhole



Proof of Claim 2 Cont: Ramsey

Apply Ramsey’s Theorem to the graph on

{w1, . . . ,wR(m)}.

to obtain homog set

z1, . . . , zm.

We will assume the z1, . . . , zm form an ind set.
(The case where the form a clique is similar.)
We call the set Super Homog since it looks the same to U and to
each other.
Picture on the next slide.
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The Super Homog Set

v1
v2
v3

…  

vn

X Homog

z1
z2
z3

…  
zm



Proof of Claim 2 Continued

(∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

I We will assume the zi ’s form a clique (the other case is
similar).

I All of the zi ’s map to the same vector. Hence they all look
the same to v1, . . . , vn.

Example All zi have edge to {v1, v3, v17} but no other vj .

Let H0 be G restricted to X ∪ {z1, . . . , zm}. By Claim 1 H0 |= φ.
For every p ≥ 1 we form a graph Hp = (Vp,Ep) on n + m + p
vertices such that Hp |= φ:
Informally add m + p vertices that are just like the zi ’s.
Formally Next Slide.
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Proof of Claim 2 Continued, Formal Hp = (Vp,Ep)

(∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

I Vp = X ∪ {z1, . . . , zm, zm+1, . . . , zm+p} where zm+1, . . . , zm+p

are new vertices.
I Ep is the union of the following edges.

I The edges in H0,
I Make {z1, . . . , zm+p} form a clique.
I Let (b1, . . . , bn) be the vector that all of the elements of
{z1, . . . , zm} mapped to. For m + 1 ≤ j ≤ m + p, for
1 ≤ i ≤ m such that bi = 1, put an edge between zj and vi .
Example All of the zj ’s have a edge to {v1, v3, v17} but
nothing else.

X sees all of the z1, . . . , zm+p as the same. Hence any subset of
the {z1, . . . , zm+p} of size m looks the same to X and to the other
zi ’s. Hence Hp |= φ, so n + m + p ∈ spec(φ).
End of Proof of Claim 2
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Claim 3

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].
N0 = n + 2nR(m).
N0 /∈ spec(φ) =⇒ spec(φ) ⊆ {0, . . . ,N0 − 1}.

Proof of Claim 3
By Claim 2
{N0, . . .} ∩ spec(φ) 6= ∅ =⇒ {n + m, . . . ,N0, . . .} ⊆ spec(φ).
We take the contrapositive with a weaker premise.

N0 /∈ spec(φ) =⇒ {N0, . . .} ∩ spec(φ) = ∅

=⇒ spec(φ) ⊆ {0, . . . ,N0 − 1}.

End of Proof of Claim 3
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We put a subcase of Claim 2, and Claim 3, next to each other to
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Let N0 = n + 2nR(m).

Claim 2
If N0 ∈ spec(φ) then {n + m, . . . , } ⊆ spec(φ).

Claim 3
If N0 /∈ spec(φ) then spec(φ) ⊆ {0, . . . ,N0 − 1}.
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Algorithm for Finding spec(φ)

1. Input

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].

2. Let N0 = n + 2nR(m). Determine if N0 ∈ spec(φ).

2.1 If YES then by Claim 2 {n + m, . . .} ⊆ spec(φ).
For 0 ≤ i ≤ n + m − 1 test if i ∈ spec(φ). You now know
spec(φ) which is co-finite. Output it.

2.2 If NO then, by Claim 3 spec(φ) ⊆ {0, . . . ,N0 − 1}.
For 0 ≤ i ≤ N0 − 1 test if i ∈ spec(φ). You now know spec(φ)
which is finite set. Output it.

End of Proof of Main Theorem
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Other Sentences. Part I

What other Sentences could we look at?
∃∗∀∗ sentences with more complicated objects than graphs.

Colored Graphs c kinds of edges.

We were looking a the theory of graphs, so E (x , y) is T or F. We
can generalize this to allowing E (x , y) to be R or B or G . Or any
finite number of colors.
You may do this on a HW.

a-ary Hypergraphs a-ary Hyperedges. c-colored hypergraph. For
example every triple is colored R or B or G . Or any finite number
of colors.
Key ingredient Ramsey theory on a-hypergraphs.
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Other Sentences. Part II

Many Predicates We could have U1(x),. . ., U7(x) (all 19-valued).
E1(x , y),. . .,E13(x , y) (all 4-colored).

Actually 7 unary functions that are 19-valued is equivalent to 1
unary function that is GUESS-valued.

GUESS is 197.
Key ingredient Ramsey theory on ≤ a-hypergraphs since use it on
Unary THEN binary, THEN (if more arities then more).
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Morgan Sentences

(∃∗∀∗)∗-sentences, only predicate E (x , y). Morgan sentences.

Is spec for Morgan Sentences decidable? Vote
YES, NO, Unknown to Science.
Answer on next slide.
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Morgan Sentences Answer

Known If φ is a Morgan sentence then spec(φ) is a union of
arithmetic progressions OR the complement of such (proof is
hard). So for example

{4, 7, 10, . . .} ∪ {11, 22, 33, . . .}.

Known If A is a Union of AP’s then (∃φ)[spec(φ) = A].
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Other Sentences. Part III

(∃∗∀∗)∗-sentences, predicates of arity ≤ a-ary. McKenzie
sentences (that name is real).

Is spec for McKenzie Sentences decidable? Vote.

YES, NO, Unknown to Science.YES.
Known If φ is a Mackenzie sentence then spec(φ) ∈ EXPTIME .
Also Known If A ∈ EXPTIME then there exists Mackenzie φ such
that spec(φ) = A.



Other Sentences. Part III

(∃∗∀∗)∗-sentences, predicates of arity ≤ a-ary. McKenzie
sentences (that name is real).

Is spec for McKenzie Sentences decidable? Vote.

YES, NO, Unknown to Science.YES.
Known If φ is a Mackenzie sentence then spec(φ) ∈ EXPTIME .
Also Known If A ∈ EXPTIME then there exists Mackenzie φ such
that spec(φ) = A.



Other Sentences. Part III

(∃∗∀∗)∗-sentences, predicates of arity ≤ a-ary. McKenzie
sentences (that name is real).

Is spec for McKenzie Sentences decidable? Vote.

YES, NO, Unknown to Science.

YES.
Known If φ is a Mackenzie sentence then spec(φ) ∈ EXPTIME .
Also Known If A ∈ EXPTIME then there exists Mackenzie φ such
that spec(φ) = A.



Other Sentences. Part III

(∃∗∀∗)∗-sentences, predicates of arity ≤ a-ary. McKenzie
sentences (that name is real).

Is spec for McKenzie Sentences decidable? Vote.

YES, NO, Unknown to Science.YES.

Known If φ is a Mackenzie sentence then spec(φ) ∈ EXPTIME .
Also Known If A ∈ EXPTIME then there exists Mackenzie φ such
that spec(φ) = A.



Other Sentences. Part III

(∃∗∀∗)∗-sentences, predicates of arity ≤ a-ary. McKenzie
sentences (that name is real).

Is spec for McKenzie Sentences decidable? Vote.

YES, NO, Unknown to Science.YES.
Known If φ is a Mackenzie sentence then spec(φ) ∈ EXPTIME .

Also Known If A ∈ EXPTIME then there exists Mackenzie φ such
that spec(φ) = A.



Other Sentences. Part III

(∃∗∀∗)∗-sentences, predicates of arity ≤ a-ary. McKenzie
sentences (that name is real).

Is spec for McKenzie Sentences decidable? Vote.

YES, NO, Unknown to Science.YES.
Known If φ is a Mackenzie sentence then spec(φ) ∈ EXPTIME .
Also Known If A ∈ EXPTIME then there exists Mackenzie φ such
that spec(φ) = A.



App, “App”, or ““App””

Vote App OR “App” OR ““App””



App, “App”, or ““App””

App This was not a problem people came up with to find an app
of Ramsey’s Theorem. Ramsey was working on this problem in
logic and proved Ramsey’s Theorem to help him solve it. So the
question in Logic is legit.

“App” While origin is legit, do we care now? I do, and my advisor
Harry Lewis does (I have been in email contact with him about
this lecture and he gave me several pointers and facts) but do
YOU care?

““App”” This would be unfair. I reserve the 4-quotes if either
NOBODY cares or ONLY I care. (When I prove primes are infinite
FROM van Der Waerden’s Theorem, feel free to use 4 quotes. I
am not kidding.)

Vote App OR “App” OR ““App””
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Harry Lewis does (I have been in email contact with him about
this lecture and he gave me several pointers and facts) but do
YOU care?

““App”” This would be unfair. I reserve the 4-quotes if either
NOBODY cares or ONLY I care. (When I prove primes are infinite
FROM van Der Waerden’s Theorem, feel free to use 4 quotes. I
am not kidding.)

Vote App OR “App” OR ““App””



App, “App”, or ““App””

App This was not a problem people came up with to find an app
of Ramsey’s Theorem. Ramsey was working on this problem in
logic and proved Ramsey’s Theorem to help him solve it. So the
question in Logic is legit.

“App” While origin is legit, do we care now? I do, and my advisor
Harry Lewis does (I have been in email contact with him about
this lecture and he gave me several pointers and facts) but do
YOU care?

““App”” This would be unfair. I reserve the 4-quotes if either
NOBODY cares or ONLY I care. (When I prove primes are infinite
FROM van Der Waerden’s Theorem, feel free to use 4 quotes. I
am not kidding.)

Vote App OR “App” OR ““App””


