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Poly Van Der Warden’s
(PVDW) Theorem

Exposition by William Gasarch

January 23, 2025



Convention

Whenever I write a, d or a, d1 or anything of that sort we are
assuming a, d ∈ N and a, d ≥ 1.



Recall VDW’s Theorem

VDW’s Theorem For all k , c there exists W = W (k , c) such that
for all COL : [W ]→ [c] there exists a, d such that

a, a + d , . . . , a + (k − 1)d same col.

Why the functions d , 2d , . . . , (k − 1)d?

Can we generalize and use f1(d), . . . , fk(d) for some f1, . . . , fk?
Notation Z[x ] is set of polynomials with coefficients in Z.

Poly VDW Theorem For all p1, . . . , pk ∈ Z[x ] and c ∈ N there
exists W = W (p1, . . . , pk ; c) such that for all COL : [W ]→ [c]
there exists a a, d , such that

a, a + p1(d), . . . , a + pk(d) same col.

True? or is Bill lying to us? Try to find counterexamples.
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Counterexample and Reformulation

Poly VDW Theorem For all p1, . . . , pk ∈ Z[x ] and c ∈ N there
exists W = W (p1, . . . , pk ; c) such that for all COL : [W ]→ [c]
there exists a a, d such that

a, a + p1(d), . . . , a + pk(d) same col.

Stupid Counterexample p1(d) = 1, c = 2.
The coloring RBRBRB · · · has no two naturals 1-apart that have
same color.

Poly VDW Theorem For all p1, . . . , pk ∈ Z[x ] with
(∀i)[pi (0) = 0], and c ∈ N, there exists W = W (p1, . . . , pk ; c)
such that for all COL : [W ]→ [c] there exists a a, d such that

a, a + p1(d), . . . , a + pk(d) same col.
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Credit Where Credit is Due

Poly VDW theorem first proven by Bergelson and Leibman in
Polynomial Extensions of van der Waerden’s and Szemeredi’s
Theorem Journal of the AMS, Vol 9, 1996. Their paper is here:
https:

//www.cs.umd.edu/~gasarch/TOPICS/vdw/BergLeib.pdf

Used hard math and did not give bounds on PVDW numbers.

The first Elementary proof was by Walters in
Combinatorial proofs of the Polynomial Van Der Waerden
Theorem and the Polynomial Hales-Jewitt Theorem Journal
of the London Math Soc., Vol 61, 2000.
His paper is here:
https:

//www.cs.umd.edu/~gasarch/TOPICS/vdw/walters.pdf

We present his proof.

https://www.cs.umd.edu/~gasarch/TOPICS/vdw/BergLeib.pdf
https://www.cs.umd.edu/~gasarch/TOPICS/vdw/BergLeib.pdf
https://www.cs.umd.edu/~gasarch/TOPICS/vdw/walters.pdf
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Notation

PVDW(p1(x), . . . ,pk(x); c) means
There exists W = W (p1, . . . , pk ; c) such that for all
COL : [W ]→ [c] there exists a a, d such that

a, a + p1(d), . . . , a + pk(d) same col.

PVDW(p1(x), . . . ,pk(x)) means
For all c there exists W = W (p1, . . . , pk ; c) st for all
COL : [W ]→ [c] there exists a a, d st

a, a + p1(d), . . . , a + pk(d) same col.
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Easy Cases

PVDW(x , 2x , 3x , . . . , (k − 1)x)). This is VDW’s Thm.

GKKZ: https://www.cs.umd.edu/~gasarch/GKKZP/paper.pdf
PVDW(x2; 2): W (x2; 2) = 5. Booktalk/GKKZ.
PVDW(x2 + x ; 2): W (x2 + x ; 2) ≤ 13. HW 8. (Liam Numbs).
PVDW(ax2 + bx ; 2): W (ax2 + bx ; 2) ≤ 12|a|+ 6|b|. GKKZ.

PVDW(x2; 3): W (x2; 3) ≤ 59. Booktalk/GKKZ.
PVDW(ax2 + bx ; 3): W (ax2 + bx ; 3) ≤ O(|a5b2|). GKKZ.
PVDW(x2 + x ; 3): W (x2 + x ; 3) ≤ 73. HW 8. (Liam Numbs) .

PVDW(x2; 4): W (x2; 4) ≤ 1 + 290, 085, 2892. Booktalk/GKKZ.
PVDW(ax2 + bx ; 4): W (ax2 + bx ; 4) A few bds known. GKKZ.

First hard case: PVDW(x2; 5).

https://www.cs.umd.edu/~gasarch/GKKZP/paper.pdf
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Poly Van Der Warden’s
(PVDW) Theorem:

PVDW(x2)

Exposition by William Gasarch

January 23, 2025



We Begin Proof of PVDW(x2)

W (x2; 5): The low value of 5 does not help us.
We will prove PVDW(x2).

Recall that this is:
Thm For all c ∈ N there exists W = W (x2; c) such that for all
COL : [W ]→ [c], there exists a, d such that

a, a + d2 are same color.

Note None of the results or techniques for W (ax2 + bx ; c) for
c ≤ 4 will help at all. Oh well.
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We Prove a Lemma Which Implies Theorem

Want:
Thm For all c ∈ N there exists W = W (x2; c) st for all
COL : [W ]→ [c]
(∃a, d)[a, a + d2 same color].

Will prove:
Lemma Fix c ∈ N. For all r there exists U = U(r) st for all
COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2 same color], OR

ii) (∃a, d1, . . . , dr )[a, a + d2
1 , . . . , a + d2

r all diff cols].

Lemma proves Theorem by taking r = c . Second part can’t
happen, so first part does.
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Lemma proves Theorem by taking r = c . Second part can’t
happen, so first part does.



Proof of Base Case of Lemma

Proof of Lemma is by induction on r .
r = 1 For all COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2 same color] OR

ii) (∃a, d1)[a, a + d2
1 diff cols].

U(1) = 2. Take a = d = d1 = 1.
a = 1
a + d2 = 1 + 12 = 2.
So they have the same color.
If a, d same col have i . If a, d diff col have ii .
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Proof of Ind Step of Lemma

Assume that there exists U = U(r) st

I (∃a, d)[a, a + d2 same color], OR

I (∃a, d1, . . . , dr )[a, a + d2
1 , . . . , a + d2

r all diff cols].

We need to prove U(r + 1) exists.
GOTO WHITE BOARD to prove

U(r + 1) ≤

(U(r)W (2U(r), cU(r)))2 + U(r)W (2U(r), cU(r)).
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Note What we Used

We used VDW to prove PVDW(x2).

We denote that informally as:
PVDW(x , 2x , 3x , . . .) =⇒ PVDW(x2).
(This is not quite right since we only use a FINITE VDW theorem,
and in fact the infinite one is false.)

Keep that in mind.
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Poly Van Der Warden’s
(PVDW) Theorem:
PVDW(x2 + x)

Exposition by William Gasarch

January 23, 2025



We Begin Proof of PVDW(x2 + x)

Thm For all c ∈ N there exists W = W (x2 + x ; c) st, for all
COL : [W ]→ [c], there exists a, d st

a, a + d2 + d are same color.



We Prove a Lemma Which Implies Theorem

Want:
Thm For all c ∈ N there exists W = W (x2 + x ; c) st for all
COL : [W ]→ [c],
(∃a, d)[a, a + d2 + d same color ].

Will prove:
Lemma Fix c ∈ N. For all r there exists U = U(r) st for all
COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2 + d same color], OR

ii) (∃a, d1, . . . , dr )[a, a + d2
1 + d1, . . . , a + d2

r + dr diff cols].

Lemma proves Theorem by taking r = c . Second part can’t
happen, so first part does.
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Proof of Base Case of Lemma

Proof of Lemma is by induction on r .
r = 1 For all COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2 + d same color], OR

ii) (∃a, d1)[a, a + d2
1 + d1 diff colors].

U(1) = 3. Take a = d = d1 = 1.
a = 1
a + d2 + d = 1 + 12 + 1 = 3.
If they are the same col, have i , else have ii .
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Note What we Used

We showed

PVDW(x , 2x , 3x , . . .) =⇒ PVDW(x2 + x)

Note that PVDW(x2) did not help get PVDW(x2 + x).

Keep that in mind.
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This Generalizes

Thm Let A,B ∈ Z. For all c ∈ N there exists
W = W (Ax2 + Bx ; c) st for all COL : [W ]→ [c],
(∃a, d)[a, a + Ad2 + Bd same color].

PVDW(x , 2x , 3x , . . .) =⇒ PVDW(Ax2 + Bx).

Proof is similar to

PVDW(x , 2x , 3x , . . .) =⇒ PVDW(x2 + x).
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Poly Van Der Warden’s
(PVDW) Theorem:
PVDW(x2, x2 + x)

Exposition by William Gasarch

January 23, 2025



We Begin Proof of PVDW(x2, x2 + x)

Thm For all c ∈ N there exists W = W (x2, x2 + x ; c) such that,
for all COL : [W ]→ [c], there exists a, d such that

a, a + d2, a + d2 + d are same col.



We Prove a Lemma Which Implies Theorem

Want:
Thm (∀c ∈ N)(∃W = W (x2, x2 + x ; c) st for all COL : [W ]→ [c]
(∃a, d)[a, a + d2, a + d2 + d same col].

Think about what the lemma will be with your neighbor.
Lemma Fix c ∈ N. For all r there exists U = U(r) st for all
COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2, a + d2 + d same col], OR

ii) (∃a, d1, . . . , dr )
[a, {a + d2

1 , a + d2
1 + d1}, . . . , {a + d2

r , a + d2
r + dr} diff colors].

(The pair in {} are same col.)

Lemma proves Theorem by taking r = c . Second part can’t
happen, so first part does.
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Proof of Base Case of Lemma

Proof of Lemma is by Induction.
r = 1 For all COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2, a + d2 + d same col], OR

ii) (∃a, d1)[a, {a + d2
1 , a + d2

1 + d1} diff colors].

U(1) = W (2, c).
Will get a′, d1 st a′, a′ + d1 are same col.
Rewrite: a′ = (a′ − d2

1 ) + d2
1 . Let a = a′ − d2

1 .
a + d2

1 = a′

a + d2
1 + d1 = a′ + d1

So they have the same color.
If a is that col, have i . If a is diff col, have ii .
There is one thing wrong with this proof. Can you tell?
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The Issue and Our Convention

U(1) = W (2, c).

Will get a′, d1 st a′, a′ + d1 are same col.
Rewrite: a′ = (a′ − d2

1 ) + d2
1 . Let a = a′ − d2

1 .
a + d2

1 = a′ a + d2
1 + d1 = a′ + d1

So they have the same color.
If a is that col, have i . If a is diff col, have ii .
There is one thing wrong with this proof. Can you tell?

What if a′− d 2
1 < 0? Then a < 0.

Can you fix this?

Fix: U(1) = W (2; c)2 + W (2; c). Do the above in W (2; c) part.

Convention We ignore this issue since we know how to fix it.

Hence our bds are a byte lower than bds in real proof.

The bounds are so big that we don’t care.
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Proof of Ind Step of Lemma

Assume that there exists U = U(r) st
for all COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d2, a + d2 + d same col], OR

ii) (∃a, d1, . . . , dr )
[a, {a + d2

1 , a + d1 + d}, . . . , {a + d2
r , a + d2

r + dr} diff colors].

GOTO WHITE BOARD
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We Begin Proof of PVDW(x2, x)

Thm For all c ∈ N there exists W = W (x , x2; c) st, for all
COL : [W ]→ [c], there exists a, d st

a, a + d , a + d2 are same col.



We Prove a Lemma Which Implies Theorem

Want:
Thm For all c ∈ N there exists W = W (x , x2; c) st for all
COL : [W ]→ [c],
(∃a, d)[a, a + d , a + d2 same col ].

Think about what the lemma will be with your neighbor.
Will prove:
Lemma Fix c ∈ N. For all r there exists U = U(r) st for all
COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d , a + d2 same col], OR

ii) (∃a, d1, . . . , dr )[a, {a+d1, a+d2
1}, . . . , {a+dr , a+d2

r } diff cols].
(The pair in {} are same col.)

Lemma proves Theorem by taking r = c . Second part can’t
happen, so first part does.
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Proof of Base Case of Lemma

Proof of Lemma is by induction on r .
r = 1 For all COL : [U]→ [c] EITHER

i) (∃a, d)[a, a + d , a + d2 same color], OR

ii) (∃a, d1)[a, {a + d1, a + d2
1} diff colors].

Let U(1) = W (x2 − x ; c). For a c-colorings of [U(1)] get
a′, d1 st a′, a′ + d2

1 − d1 are same col.
Rewrite: a′ = (a′ − d1) + d1. Let a = a′ − d1.

a′ = a + d1
a′ + d2

1 − d1 = a + d2
1 .

So they have the same color.
If a is that col, have i . If a is diff col, have ii .
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Proof of Ind Step of Lemma

Assume that there exists U = U(r) st
for all COL : [U]→ [c] EITHER

I (∃a, d)[a, a + d , a + d2 + d same col], OR

I (∃a, d1, . . . , dr )[a, {a+d1, a+d2
1}, . . . , {a+dr , a+d2

r } diff cols].

GOTO WHITE BOARD
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Which Proofs were Similar?

Proofs of all PVDW(x2 −�x . . . , x2, . . . , x2 +�x) are similar.

Proof used VDW for Base and for Ind.

Key There is one lead coefficient and its for quadratic-degree 2.
We will denote this (1, 0): 1 quad lead coeff, 0 linear lead coeffs.

Proofs of all PVDW(x , x2 −�x , . . . , x2, . . . , x2 +�x) are similar.

Proofs used PVDW(x2 −�x . . . , x2, . . . , x2 +�x) for Base and
Ind.
Key There are two lead coefficients and they are for
quadratic-degree 2 and linear-degree 1. We will denote this (1, 1):
1 quad lead coeff, 1 linear lead coeffs.
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Associate to Each Set of Poly’s an Index

Notation Let P be a finite subset of Z[x ] such that
(∀p ∈ P)[p(0) = 0].
Assume the max degree of a poly is d .
For 1 ≤ i ≤ d let ni be the number of lead coefficients of polys in
P of degree i .

The index of P is (nd , nd−1, . . . , n1).
Examples
{x3, x3 +�x2 +�x , x2 +�x , 3x , 4x , 10x} has index (1, 1, 3).
{x4, 2x4 +�x3, x2, 2x2, 100x2, x , 100000x) has index (2, 0, 3, 2).
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A Powerful Notation

PVDW(1, 0) means
(∀P ⊆ Z[x ]), P of index (1, 0), PVDW(P) is true.

From what we did you could easily prove P(1, 0).

PVDW(nd , . . . , n1) means
(∀P ⊆ Z[x ]), P of index (nd , . . . , n1), PVDW(P) is true.

We showed PVDW(1, 0) =⇒ PVDW(1, 1).

But what about PVDW(1, 0)? That was proven by VDW.
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Can we Express VDW in our Powerful Notation?

PVDW(4) would include PVDW(x , 2x , 3x , 4x) which is
(∀c)[VDW(5, c)].

Our notation is not so powerful after all! It cannot express VDW!

We extend our notation. We want (∀k)[PVDW(k)].
We use PVDW(ω).

Example
PVDW(7, ω, 12) means (∀k)[PVDW(7, k , 12)].

Notation Let N+ be N ∪ {ω}.
Let nd , . . . , n1 ∈ N+ is defined in the obvious way.
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What Did We Prove?

Our proof of PVDW(x2) has all the ideas to prove
PVDW(ω) =⇒ PVDW(1, 0).

Our proof of PVDW(x , x2) has all the ideas to prove
PVDW(1, 0) =⇒ PVDW(1, 1).
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Actual Proof of Poly VDW Theorem

Poly VDW thm proven by ind on the indexes of sets. Ordering:

(1) ≺ (2) ≺ · · · ≺ (ω) ≺ (1, 0) ≺ (1, 1) ≺ · · · ≺ (1, ω)

≺ (2, 0) ≺ (2, 1) ≺ · · · (2, ω) · · · · ≺ (1, 0, 0) ≺ · · · · · ·

This is an ωω ind. Contrast VDW was a ω2 ind.
We do this in two parts.

1. Let 0 ≤ i ≤ d . Let nd , . . . , ni ∈ N+ with ni ∈ N.

PVDW(nd , . . . , ni , ω, . . . , ω) =⇒ PVDW(nd , . . . , ni+1, ω, . . . , ω).

2. PVDW(ω, . . . , ω) =⇒ PVDW(1, 0, . . . , 0).
d ω’s in the 1st part; d 0’s in the 2nd part.
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≺ (2, 0) ≺ (2, 1) ≺ · · · (2, ω) · · · · ≺ (1, 0, 0) ≺ · · · · · ·

This is an ωω ind. Contrast VDW was a ω2 ind.
We do this in two parts.

1. Let 0 ≤ i ≤ d . Let nd , . . . , ni ∈ N+ with ni ∈ N.

PVDW(nd , . . . , ni , ω, . . . , ω) =⇒ PVDW(nd , . . . , ni+1, ω, . . . , ω).

2. PVDW(ω, . . . , ω) =⇒ PVDW(1, 0, . . . , 0).
d ω’s in the 1st part; d 0’s in the 2nd part.



Bounds on Poly VDW Numbers

1. The bounds given by this proof are not primitive recursive.

2. The bounds given by this proof are bigger than those for
VDW’s Theorem.
The Prim Rec hierarchy had functions of levels 1, 2, 3, . . ..
The bounds from proof of VDW theorem are at level ω2.
The bounds from proof of POLVDW theorem are at level ωω.

3. Are better bounds known? See next slide.
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A False Prediction
In 1999 there were two thoughts in the air

1. PVDW(~n) is not prim rec and a logician will prove this deep
result. Perhaps like the Large Ramsey Numbers (1977)
though not that big.

2. PVDW(~n) is surely prim rec and a combinatorist will prove
this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not
that well known, even now. So there were no thoughts in the air.
(More on that Later.)
Even so, are there better bounds? VOTE: BETTER BOUNDS
KNOWN, BETTER BOUNDS UNKNOWN.

Logician (Shelah) proved PVDW(~n) prim rec: clever!

I Proof is elementary. Can be in this class but won’t.

I Bounds still large. Not able to write down.

I Proof badly needs someone to write it up better.

I Bill- remember to tell them how you learned of Shelah’s result.
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Looking Back to VDW Theorem

We showed
PVDW(ω) =⇒ PVDW(1, 0).
PVDW(1, 0) =⇒ PVDW(1, 1).

Using these same technique we can get a clean proof of
PVDW(k) =⇒ PVDW(k + 1).

So we can obtain a proof of VDW that you can write down nicely.

1. The proof really is the proof I already showed you.

2. While one COULD obtain a clean proof of VDW nobody has
bothered writing this up (except me).



Looking Back to VDW Theorem

We showed
PVDW(ω) =⇒ PVDW(1, 0).
PVDW(1, 0) =⇒ PVDW(1, 1).

Using these same technique we can get a clean proof of
PVDW(k) =⇒ PVDW(k + 1).

So we can obtain a proof of VDW that you can write down nicely.

1. The proof really is the proof I already showed you.

2. While one COULD obtain a clean proof of VDW nobody has
bothered writing this up (except me).



Looking Back to VDW Theorem

We showed
PVDW(ω) =⇒ PVDW(1, 0).
PVDW(1, 0) =⇒ PVDW(1, 1).

Using these same technique we can get a clean proof of
PVDW(k) =⇒ PVDW(k + 1).

So we can obtain a proof of VDW that you can write down nicely.

1. The proof really is the proof I already showed you.

2. While one COULD obtain a clean proof of VDW nobody has
bothered writing this up (except me).



Looking Back to VDW Theorem

We showed
PVDW(ω) =⇒ PVDW(1, 0).
PVDW(1, 0) =⇒ PVDW(1, 1).

Using these same technique we can get a clean proof of
PVDW(k) =⇒ PVDW(k + 1).

So we can obtain a proof of VDW that you can write down nicely.

1. The proof really is the proof I already showed you.

2. While one COULD obtain a clean proof of VDW nobody has
bothered writing this up (except me).


