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We know that
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One can also get
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We want to find lower bounds

PROBLEM We want to find a coloring of the edges of Kn w/o a
mono Kk . for some n = f (k).
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A Lower Bound

Theorem R(k) ≥ (k − 1)2.

Proof
Here is a coloring of the edges of K(k−1)2 with no mono Kk :

First partition [(k − 1)2] into k − 1 groups of k − 1 each.

COL(x , y) =

{
RED if x , y are in same Vi

BLUE if x , y are in different Vi

(1)

Look at any k vertices.

I They can’t all be in one Vi , so it can’t have RED Kk .

I They can’t all be in different Vi , so it can’t have BLUE Kk .
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Recap

(k − 1)2 ≤ R(k) ≤ 22k−1

Can we do better?

PROBLEM We want to find a coloring of the edges of Kn

without a mono Kk for some n ≥ k2.

WRONG QUESTION I only need show that such a coloring
exists.
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Pick a coloring at Random! (cont)

Recap If we color
([n]
2

)
at random then

Prob that the coloring HAS a homog set of size k is ≤ nk

k!2k(k−1)/2 .

IF this prob is < 1 then there exists a coloring of the edges
([n]
2

)
with no homog set of size k.

So if nk

k!2k(k−1)/2 < 1 then there exists a coloring of the edges
([n]
2

)
with no homog set of size k.

We will work out the algebra of nk

k!2k(k−1)/2 < 1 on the next slide;
however, the real innovation here is that we show that a coloring
exists by showing that the prob that it does not exists is < 1.
This is The Probabilistic Method. We talk more about its
history later.
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Upper and Lower Bounds

1

e
√

2
k2k/2 ≤ R(k) ≤ 22k√

k

David Conlon https://arxiv.org/pdf/math/0607788.pdf

using sophisticated methods improved the upper bound to:

(∀a ∈ N)

[
R(k) ≤ 22k

ka

]

Joel Spencer spencerLBR using sophisticated methods improved
the lower bound to:

√
2

e
k2k/2 ≤ R(k).

Joel Spencer told me he was hoping for a better improvement.

https://arxiv.org/pdf/math/0607788.pdf
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The Prob Method

The Prob Method Showing that an object exists by showing that
the prob that it exists is nonzero.

I Used a lot in combinatorics, algorithms, complexity theory.

I Uses very sophisticated probability and has been the
motivation for new theorems in probability.

I Origin is Ramsey Theory. Erdös developed it to get better
lower bounds on R(k) as shown here.

I I would not call the Prob Method and application of Ramsey.
(Some articles do.)

I I would say that Ramsey Theory was the initial motivation for
the Prob Method which is now used for many other things,
some of which are practical.
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Distinct Diff Sets

Given n try to find a set A ⊆ {1, . . . , n} such that ALL of the
differences of elements of A are DISTINCT.

{1, 2, 22, . . . , 2blog2 nc} ∼ log2 n elements

Can we do better?
STUDENTS break into small groups and try to either do better
OR show that you best you can do is O(log n).
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An Approach

Let a be a number to be determined.

Pick a RANDOM A ⊆ {1, . . . , n} of size a.

What is the probability that all of the diffs in A are distinct?

We hope the prob is strictly GREATER THAN 0.

KEY: If the prob is strictly greater than 0 then there must be
SOME set of a elements where all of the diffs are distinct.
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We only need to show that the prob is LESS THAN 1.



Review a Little Bit of Combinatorics

The number of ways to CHOOSE y elements out of x elements is(
x

y

)
=

x!

y !(x − y)!
.



Determining the Prob I

If a RAND A ⊆ {1, . . . , n}, size a, want bound on prob all of the
diffs in A are NOT distinct. Numb of ways to choose a elements
out of {1, . . . , n} is

(n
a

)
.

Two ways to create a set with a diff repeated:
Way One:

I Pick x < y . There are
(n
2

)
≤ n2 ways to do that.

I Pick diff d such that x + d 6= y , x + d ≤ n, y + d ≤ n. Can
do ≤ n ways. Put x , y , x + d , y + d into A.

I Pick a− 4 more elements out of the n − 4 left.

Number of ways to do this is ≤ n3 ×
(n−4
a−4
)
.

Way Two: Pick x < y . Let d = y − x (so we do NOT pick d).
Put x , y = x + d , y + d into A. Pick a− 3 more elements out of
the n − 3 left.
Number of ways to do this is ≤ n2 ×

(n−3
a−3
)
.
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Determining the Prob II

If you pick a RANDOM A ⊆ {1, . . . , n} of size a then a bound on
the probability that all of the diffs in A are NOT distinct is

n3 ×
(n−4
a−4
)

+ n2 ×
(n−3
a−3
)(n

a

) =
n3 ×

(n−4
a−4
)(n

a

) +
n2 ×

(n−3
a−3
)(n

a

)

=
n3a(a− 1)(a− 2)(a− 3)

n(n − 1)(n − 2)(n − 3)
+

n2a(a− 1)(a− 2)

n(n − 1)(n − 2)

≤ 32a4

n
Need some Elem Algebra and uses n ≥ 5.
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ANSWER

RECAP: If pick a RANDOM A ⊆ {1, . . . , n} then the prob that

there IS a repeated difference is ≤ 32a4

n .

So WANT

32a4

n
< 1

Take

a =

(
n

33

)1/4

.

UPSHOT: For all n ≥ 5 there exists a all-diff-distinct subset of
{1, . . . , n} of size roughly n1/4.
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GENERAL UPSHOT

We proved an object existed by showing that the Prob that it
exists is nonzero!.

Is the proof constructive?

I Old view: proof is nonconstructive since it does not say how
to obtain the object.

I New view: proof is constructive since can DO the random
experiment and will probably get what you want.

I Caveat: Evan Golub’s PhD thesis took some prob
constructions and showed how to make them really work. I
was his advisor.

I Caveat: If the Prob Proof has high prob of getting the object,
then seems constructive. If all you prove is nonzero, than
maybe not.
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Actually Can Do Better

I With a maximal set argument can do Ω(n1/3).

I Better is known: Ω(n1/2) which is optimal.
(That is a result by Kolmos-Sulyok-Szemeredi from 1975)



SUM FREE SET
PROBLEM

Exposition by William Gasarch



Sum Free Set Problem

A More Sophisticated Use of Prob Method.
Definition: A set of numbers A is sum free if there is NO
x , y , z ∈ A such that x + y = z .

Example: Let y1, . . . , ym ∈ (1/3, 2/3) (so they are all between 1/3
and 2/3). Note that yi + yj > 2/3, hence yi + yj /∈ {y1, . . . , ym}.



ANOTHER EXAMPLE

Def: frac(x) is the fractional part of x . E.g., frac(1.414) = .414.

Lemma: If y1, y2, y3 are such that
frac(y1), frac(y2), frac(y3) ∈ (1/3, 2/3) then y1 + y2 6= y3.
Proof: STUDENTS DO THIS. ITS EASY.
Example: Let A = {y1, . . . , ym} all have fractional part in
(1/3, 2/3). A is sum free by above Lemma.
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QUESTION

Given x1, . . . , xn ∈ R does there exist a LARGE sum-free subset?
How Large?

VOTE:

1. There is a sumfree set of size roughly n/3.

2. There is a sumfree set of size roughly
√
n.

3. There is a sumfree set of size roughly log n.

STUDENTS - WORK ON THIS IN GROUPS.
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SUM SET PROBLEM

Theorem For all ε > 0, for all A that are a set of n real numbers,
there is a sum-free subset of A of size (1/3− ε)n.

Proof: Let L be LESS than everything in A and U be BIGGER
than everything in A. We will make U − L LARGE later.
For a ∈ [L,U] let

Ba = {x ∈ A : frac(ax) ∈ (1/3, 2/3)}.

For all a, Ba is sum-free by Lemma above.
SO we need an a such that Ba is LARGE.



SUM SET PROBLEM

Theorem For all ε > 0, for all A that are a set of n real numbers,
there is a sum-free subset of A of size (1/3− ε)n.
Proof: Let L be LESS than everything in A and U be BIGGER
than everything in A. We will make U − L LARGE later.
For a ∈ [L,U] let

Ba = {x ∈ A : frac(ax) ∈ (1/3, 2/3)}.

For all a, Ba is sum-free by Lemma above.
SO we need an a such that Ba is LARGE.



SUM SET PROBLEM

Theorem For all ε > 0, for all A that are a set of n real numbers,
there is a sum-free subset of A of size (1/3− ε)n.
Proof: Let L be LESS than everything in A and U be BIGGER
than everything in A. We will make U − L LARGE later.
For a ∈ [L,U] let

Ba = {x ∈ A : frac(ax) ∈ (1/3, 2/3)}.

For all a, Ba is sum-free by Lemma above.
SO we need an a such that Ba is LARGE.



How Big IS Ba?

What is the EXPECTED VALUE of |Ba|?

Let x ∈ A.
Pra∈[L,U](frac(ax) ∈ (1/3, 2/3))

We take U − L large enough so that this prob is ≥ (1/3− ε).

E (|Ba|) =
∑
x∈A

Pra∈[L,U](frac(ax) ∈ (1/3, 2/3))

=
∑
x∈A

(1/3− ε)

= (1/3− ε)n.

So THERE EXISTS an a such that |Ba| ≥ (1/3− ε)n.
What is a? I DON”T KNOW AND I DON”T CARE!
End of Proof
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Turan’s Theorem

Exposition by William Gasarch



Turan’s Theorem

Theorem If G = (V ,E ) is a graph, |V | = n, and |E | = e, then G
has an ind set of size at least

n
2e
n + 1

.

Turan proved this in 1941 with a complicated proof. We proof this

more easily using Probability, but first need a lemma. The proof

we give is due to Ravi Boppana and appears in the Alon-Spencer
book on The Probabilistic Method
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Lemma

Lemma If G = (V ,E ) is a graph. Then∑
v∈V

deg(v) = 2e.

Proof: Try to count the edges by summing the degrees at each
vertex. This counts every edge TWICE.
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Proof of Turan’s Theorem

Theorem If G = (V ,E ) is a graph, |V | = n, and |E | = e, then G
has an ind set of size

≥ n
2e
n + 1

.

Proof: Take the graph and RANDOMLY permute the vertices.

Example:

3 5 1 4 2

The set of vertices that have NO edges coming out on the right
form an Ind Set. Call this set I .
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How big is I

WRONG QUESTION!
What is the EXPECTED VALUE of the size of I .
(NOTE- we permuted the vertices RANDOMLY)
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How big is I
WRONG QUESTION!
What is the EXPECTED VALUE of the size of I .
(NOTE- we permuted the vertices RANDOMLY)



What is Prob v ∈ I
Let v ∈ V . What is prob that v ∈ I

u1

u2
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How Big is this Sum?

Need to find lower bound on∑
v∈V

1

dv + 1
.



Rephrase

NEW PROBLEM:
Minimize ∑

v∈V

1

xv + 1

relative to the constraint: ∑
v∈V

xv = 2e.

KNOWN: This sum is minimized when all of the xv are 2e
|V | = 2e

n .
So the min the sum can be is∑

v∈V

1
2e
n + 1

=
n

2e
n + 1

.



Recap and Done
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END OF THIS TALK/TAKEAWAY

END OF THIS TALK
TAKEAWAY: There are TWO ways (probably more) to show that
an object exists using probability.

1. Show that the probability that it exists is NONZERO. Hence
there must be some set of random choices that makes it exist.
We did this for the distinct-sums problem.

2. You want to show that an object of a size ≥ s exists. Show
that if you do a probabilistic experiment then you (a) always
get the object of the type you want, and (b) the expected size
is ≥ s. Hence again SOME set of random choices produces an
object of size ≥ s.


