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Bounds on a-ary Ramsey Numbers

Def Ra(k) is the least n such that, for all COL :
([n]
a

)
→ [2] there

exists a homog set of size k .

Recall that we showed
R2(k) ≤ 22k−1.
R3(k) ≤ TOW(2k).

What would the bound be on R4(k)?
We do not have a good way to write it down.

Consider the function
(a, k) maps to Ra(k).
What are the bounds on that?

We need a way to express very fast growing functions.
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Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.
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Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.
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More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.
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The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.
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Levels

Def PRa is the set of PR functions that can be defined with ≤ a
uses of the Recursion rule.

Note One can show that any finite number of exponentials is in
PR3.
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Bounding the Hypergraph Ramsey Numbers

R2(k) ≤ 22k = f3(O(k)). Level 3.

R3(k) ≤ TOW(2k) = f4(O(k)). Level 4.

Ra(k) ≤ fa+1(O(k)). Level a + 1.

I can now state my questions and add some more.

I Is R3(k) in PR3?

I Is the function f (a, k) = Ra(k) PR?
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More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.
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Most Functions are PR

Virtually any computable function from Nk to N that you
encounter in mathematics is primitive recursive.

Are there any computable functions that are not primitive
recursive?
Discuss.

Yes. We will see a contrived one on the next slide.
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A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode
the derivation of a PR function as a number. One can then assign
to every number a PR function easily.

Let f1, f2, . . . be all of the PR functions.

F (x) = fx(x) + 1

is computable but not a PR function.
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A “Natural” non PR Function

Def Ackerman’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.
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https://www.ackermansecurity.com/

They are called Ackerman Security since they claim that Burglar
would have to take time Ackerman(n) to break in.
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Ackerman’s Function is Natural: DS

DS is Data Structure.
A Union-Find DS for sets supports the following operations.

(1) If a is a number then make {a} a set.

(2) If A,B are sets then make A ∪ B a set.

(3) Given x find which, if any, set it is in.

I There is a DS for this problem that can do n operations in
nA−1(n, n) steps.

I One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!
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More natural examples of non-prim rec functions:

1. Goodstein Sequences (next slide packet).

2. Finite Version of Kruskal’s Tree Theorem (next next slide
packet).
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