BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Primitive Recursive Functions and Ramsey **Theory**

Exposition by William Gasarch-U of MD

KORKARA KERKER DAGA

Def $R_a(k)$ is the least *n* such that, for all COL: $\binom{[n]}{a}$ $\binom{n}{a} \rightarrow [2]$ there exists a homog set of size k.

Def $R_a(k)$ is the least *n* such that, for all COL: $\binom{[n]}{a}$ $\binom{n}{a} \rightarrow [2]$ there exists a homog set of size k .

KORKAR KERKER SAGA

Recall that we showed $R_2(k) \leq 2^{2k-1}$. $R_3(k) \leq \text{TOW}(2k)$.

Def $R_a(k)$ is the least *n* such that, for all COL: $\binom{[n]}{a}$ $\binom{n}{a} \rightarrow [2]$ there exists a homog set of size k .

Recall that we showed $R_2(k) \leq 2^{2k-1}$. $R_3(k) \leq \text{TOW}(2k)$.

What would the bound be on $R_4(k)$? We do not have a good way to write it down (not quite true–see Knuth's Arrow Notation).

KORKARA KERKER DAGA

Def $R_a(k)$ is the least *n* such that, for all COL: $\binom{[n]}{a}$ $\binom{n}{a} \rightarrow [2]$ there exists a homog set of size k .

Recall that we showed $R_2(k) \leq 2^{2k-1}$. $R_3(k) \leq \text{TOW}(2k)$.

What would the bound be on $R_4(k)$? We do not have a good way to write it down (not quite true–see Knuth's Arrow Notation).

KORKAR KERKER DRA

Consider the function (a, k) maps to $R_a(k)$. What are the bounds on that?

Def $R_a(k)$ is the least *n* such that, for all COL: $\binom{[n]}{a}$ $\binom{n}{a} \rightarrow [2]$ there exists a homog set of size k .

Recall that we showed $R_2(k) \leq 2^{2k-1}$. $R_3(k) \leq \text{TOW}(2k)$.

What would the bound be on $R_4(k)$? We do not have a good way to write it down (not quite true–see Knuth's Arrow Notation).

Consider the function (a, k) maps to $R_a(k)$. What are the bounds on that?

We need a way to express very fast growing functions.

Def $f(x_1, \ldots, x_n)$ is **PR** if either:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Def $f(x_1, \ldots, x_n)$ is **PR** if either:

1. $f(x_1, \ldots, x_n) = 0;$

KORK ERKER ADAM ADA

Def $f(x_1, \ldots, x_n)$ is **PR** if either: 1. $f(x_1, \ldots, x_n) = 0;$ 2. $f(x_1,...,x_n) = x_i;$

KORKARA KERKER DAGA

Def $f(x_1, \ldots, x_n)$ is **PR** if either: 1. $f(x_1, \ldots, x_n) = 0;$ 2. $f(x_1,...,x_n) = x_i;$ 3. $f(x_1, \ldots, x_n) = x_i + 1;$

Def
$$
f(x_1,...,x_n)
$$
 is **PR** if either:
\n1. $f(x_1,...,x_n) = 0;$
\n2. $f(x_1,...,x_n) = x_i;$
\n3. $f(x_1,...,x_n) = x_i + 1;$
\n4. $g_1(x_1,...,x_k), ..., g_n(x_1,...,x_k), h(x_1,...,x_n)$ PR ⇒

$$
f(x_1,\ldots,x_k)=h(g_1(x_1,\ldots,x_k),\ldots,g_n(x_1,\ldots,x_k))
$$
 is PR

KOKK@KKEKKEK E 1990

Def
$$
f(x_1,...,x_n)
$$
 is **PR** if either:
\n1. $f(x_1,...,x_n) = 0$;
\n2. $f(x_1,...,x_n) = x_i$;
\n3. $f(x_1,...,x_n) = x_i + 1$;
\n4. $g_1(x_1,...,x_k), ..., g_n(x_1,...,x_k), h(x_1,...,x_n) \text{ PR } \Longrightarrow$
\n $f(x_1,...,x_k) = h(g_1(x_1,...,x_k), ..., g_n(x_1,...,x_k))$ is **PR**
\n5. $h(x_1,...,x_{n+1})$ and $g(x_1,...,x_{n-1}) \text{ PR } \Longrightarrow$
\n $f(x_1,...,x_{n-1},0) = g(x_1,...,x_{n-1})$
\n $f(x_1,...,x_{n-1},m+1) = h(x_1,...,x_{n-1},m,f(x_1,...,x_{n-1},m))$

K ロ → K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

is PR.

$$
f_0(x,y)=y+1.
$$
 Successor.

$$
f_0(x, y) = y + 1.
$$
 Successor.

$$
f_1(x, y) = x + y
$$

KOKK@KKEKKEK E 1990

```
f_0(x, y) = y + 1. Successor.
f_1(x, y) = x + yf_1(x, 0) = xf_1(x, y + 1) = f_1(x, y) + 1.Used Rec Rule Once. Addition.
```
KORK ERKER ADAM ADA

$$
f_0(x, y) = y + 1.
$$
 Successor.
\n
$$
f_1(x, y) = x + y
$$

\n
$$
f_1(x, 0) = x
$$

\n
$$
f_1(x, y + 1) = f_1(x, y) + 1.
$$

\nUse the Rule Once. Addition.
\n
$$
f_2(x, y) = xy:
$$

KOKK@KKEKKEK E 1990

 $f_0(x, y) = y + 1$. Successor. $f_1(x, y) = x + y$ $f_1(x, 0) = x$ $f_1(x, y + 1) = f_1(x, y) + 1.$ Used Rec Rule Once. Addition.

 $f_2(x, y) = xy$: $f_2(x, 1) = x$ (Didn't start at 0. A detail.) $f_2(x, y + 1) = f_2(x, y) + x.$ Used Rec Rule Twice. Once to get $x + y$ PR, and once here. Multiplication

KORKARA KERKER DAGA

 $f_0(x, y) = y + 1$. Successor. $f_1(x, y) = x + y$ $f_1(x, 0) = x$ $f_1(x, y + 1) = f_1(x, y) + 1.$ Used Rec Rule Once. Addition. $f_2(x, y) = xy$: $f_2(x, 1) = x$ (Didn't start at 0. A detail.) $f_2(x, y + 1) = f_2(x, y) + x.$ Used Rec Rule Twice. Once to get $x + y$ PR, and once here. Multiplication

The PR functions can be put in a hierarchy depending on how many times the recursion rule is used to build up to the function.

KORKARA KERKER DAGA

-
-
-
-
-
-
- -
- - - K ロ K K B K K B K X B X X A X Y Q Q Q Y

K ロ K K B K K B K X B X X A X Y Q Q Q Y

$$
f_3(x,y)=x^y
$$
:

$$
f_3(x, y) = x^y
$$

\n
$$
f_3(x, 0) = 1
$$

\n
$$
f_3(x, y + 1) = f_3(x, y)x
$$

\nUsed Rec Rule three times. Exp.

K ロ K K B K K B K X B X X A X Y Q Q Q Y

$$
f_3(x, y) = x^y
$$

\n
$$
f_3(x, 0) = 1
$$

\n
$$
f_3(x, y + 1) = f_3(x, y)x
$$

\nUsed Rec Rule three times. Exp.
\n
$$
f_4(x, y) = \text{TOW}(x, y)
$$

K ロ K K B K K B K X B X X A X Y Q Q Q Y

 $f_3(x, y) = x^y$: $f_3(x, 0) = 1$ $f_3(x, y + 1) = f_3(x, y)x$. Used Rec Rule three times. Exp. $f_4(x, y) = \text{TOW}(x, y).$ $f_4(x, 0) = 1$ $f_4(x, y + 1) = f_4(x, y)^x$. Used Rec Rule four times. TOWER.

KORKARA KERKER DAGA

 $f_3(x, y) = x^y$: $f_3(x, 0) = 1$ $f_3(x, y + 1) = f_3(x, y)x$. Used Rec Rule three times. Exp. $f_4(x, y) = \text{TOW}(x, y).$ $f_4(x, 0) = 1$ $f_4(x, y + 1) = f_4(x, y)^x$. Used Rec Rule four times. TOWER. $f_5(x, y) = \text{WHAT SHOULD WE CALL THIS?}$

 $f_3(x, y) = x^y$: $f_3(x, 0) = 1$ $f_3(x, y + 1) = f_3(x, y)x$. Used Rec Rule three times. Exp. $f_4(x, y) = \text{TOW}(x, y).$ $f_4(x, 0) = 1$ $f_4(x, y + 1) = f_4(x, y)^x$. Used Rec Rule four times. TOWER. $f_5(x, y) = \text{WHAT}$ SHOULD WE CALL THIS? $f_5(x, 0) = 1$ $f_5(x, y + 1) = \text{TOW}(f_5(x, y), x).$ Used Rec Rule five times.

KOD KARD KED KED DAR

What should we call this? Discuss

 $f_3(x, y) = x^y$: $f_3(x, 0) = 1$ $f_3(x, y + 1) = f_3(x, y)x$. Used Rec Rule three times. Exp. $f_4(x, y) = \text{TOW}(x, y).$ $f_4(x, 0) = 1$ $f_4(x, y + 1) = f_4(x, y)^x$. Used Rec Rule four times. TOWER. $f_5(x, y) = \text{WHAT}$ SHOULD WE CALL THIS? $f_5(x, 0) = 1$ $f_5(x, y + 1) = \text{TOW}(f_5(x, y), x).$ Used Rec Rule five times. What should we call this? Discuss Its been called WOWER (in Graham-Rothchild-Spencer Ramsey Theory Book).

 $f_a(x, y)$ is defined as

KOKK@KKEKKEK E 1990

$$
f_a(x, y)
$$
 is defined as
\n $f_a(x, 0) = 1$
\n $f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)$

KORK ERKER ADAM ADA

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
```

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
f_1 is Addition
```

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
f_1 is Addition
f_2 is Multiplication
```

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
f_1 is Addition
f_2 is Multiplication
f_3 is Exp
```

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
f_1 is Addition
f_2 is Multiplication
f_3 is Exp
f_4 is Tower (This name has become standard.)
```

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
f_1 is Addition
f_2 is Multiplication
f_3 is Exp
f_4 is Tower (This name has become standard.)
f_5 is Wower (This name is not standard.)
```

```
f_a(x, y) is defined as
f_a(x, 0) = 1f_a(x, y + 1) = f_{a-1}(f_a(x, y), x, y)f_0 is Successor
f_1 is Addition
f_2 is Multiplication
f_3 is Exp
f_4 is Tower (This name has become standard.)
f_5 is Wower (This name is not standard.)
f<sub>6</sub> and beyond have no name.
```
Def PR_a is the set of PR functions that can be defined with $\leq a$ uses of the Recursion rule.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Def PR_a is the set of PR functions that can be defined with $\leq a$ uses of the Recursion rule.

Note One can show that any finite number of exponentials is in PR₃.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 $R_2(k) \leq 2^{2k} = f_3(O(k)).$ Level 3.

 $R_2(k) \leq 2^{2k} = f_3(O(k)).$ Level 3. $R_3(k) \leq \text{TOW}(2k) = f_4(O(k))$. Level 4.

KORK ERKER ADAM ADA

 $R_2(k) \leq 2^{2k} = f_3(O(k)).$ Level 3. $R_3(k) \leq \text{TOW}(2k) = f_4(O(k))$. Level 4. $R_a(k) \le f_{a+1}(O(k))$. Level $a+1$.

$$
R_2(k) \le 2^{2k} = f_3(O(k)).
$$
 Level 3.

$$
R_3(k) \le \text{TOW}(2k) = f_4(O(k)).
$$
 Level 4.

$$
R_a(k) \le f_{a+1}(O(k)).
$$
 Level $a + 1$.

I can now state my questions and add some more.

KID KAR KE KE KE YA GA

$$
R_2(k) \le 2^{2k} = f_3(O(k)).
$$
 Level 3.

$$
R_3(k) \le \text{TOW}(2k) = f_4(O(k)).
$$
 Level 4.

$$
R_a(k) \le f_{a+1}(O(k)).
$$
 Level $a + 1$.

I can now state my questions and add some more.

KID KAR KE KE KE YA GA

$$
\blacktriangleright
$$
 Is $R_3(k)$ in PR_3 ?

$$
R_2(k) \le 2^{2k} = f_3(O(k)).
$$
 Level 3.

$$
R_3(k) \le \text{TOW}(2k) = f_4(O(k)).
$$
 Level 4.

$$
R_a(k) \le f_{a+1}(O(k)).
$$
 Level $a + 1$.

I can now state my questions and add some more.

KID KAR KE KE KE YA GA

$$
\blacktriangleright
$$
 Is $R_3(k)$ in PR_3 ?

b Is the function
$$
f(a, k) = R_a(k)
$$
 PR?

The following are PR:

The following are PR:

1. $f(x, y) = x - y$ if $x \ge y$, 0 otherwise.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The following are PR:

- 1. $f(x, y) = x y$ if $x \ge y$, 0 otherwise.
- 2. $f(x, y) =$ the quotient when you divide x by y.

KORK ERKER ADAM ADA

The following are PR:

- 1. $f(x, y) = x y$ if $x \ge y$, 0 otherwise.
- 2. $f(x, y) =$ the quotient when you divide x by y.
- 3. $f(x, y) =$ the remainder when you divide x by y.

KORK ERKER ADAM ADA

The following are PR:

- 1. $f(x, y) = x y$ if $x \ge y$, 0 otherwise.
- 2. $f(x, y) =$ the quotient when you divide x by y.
- 3. $f(x, y) =$ the remainder when you divide x by y.

KORKA SERVER ORA

4. $f(x, y) = x \pmod{y}$.

The following are PR:

- 1. $f(x, y) = x y$ if $x > y$, 0 otherwise.
- 2. $f(x, y) =$ the quotient when you divide x by y.
- 3. $f(x, y) =$ the remainder when you divide x by y.

- 4. $f(x, y) = x \pmod{y}$.
- 5. $f(x, y) = GCD(x, y)$.

The following are PR:

- 1. $f(x, y) = x y$ if $x > y$, 0 otherwise.
- 2. $f(x, y) =$ the quotient when you divide x by y.
- 3. $f(x, y) =$ the remainder when you divide x by y.

- 4. $f(x, y) = x \pmod{y}$.
- 5. $f(x, y) = GCD(x, y)$.
- 6. $f(x) = 1$ if x is prime, 0 if not.

The following are PR:

- 1. $f(x, y) = x y$ if $x \ge y$, 0 otherwise.
- 2. $f(x, y) =$ the quotient when you divide x by y.
- 3. $f(x, y) =$ the remainder when you divide x by y.
- 4. $f(x, y) = x \pmod{y}$.
- 5. $f(x, y) = GCD(x, y)$.
- 6. $f(x) = 1$ if x is prime, 0 if not.
- 7. $f(x) = 1$ if x is the sum of 2 primes, 0 otherwise.

Most Functions are PR

Virtually any computable function from N^k to N that you encounter in mathematics is primitive recursive.

KO KA KO KE KA E KA SA KA KA KA KA KA A

Most Functions are PR

Virtually any computable function from N^k to N that you encounter in mathematics is primitive recursive.

Are there any computable functions that are not primitive recursive? Discuss.

KID KAP KID KID KID DA GA

Most Functions are PR

Virtually any computable function from N^k to N that you encounter in mathematics is primitive recursive.

Are there any computable functions that are not primitive recursive?

KORK ERKER ADAM ADA

Discuss.

Yes. We will see a contrived one on the next slide.

The PR functions are formed by building up rules. One can encode the derivation of a PR function as a number. One can then assign to every number a PR function easily.

KID KAP KID KID KID DA GA

The PR functions are formed by building up rules. One can encode the derivation of a PR function as a number. One can then assign to every number a PR function easily.

KORKA SERVER ORA

Let f_1, f_2, \ldots be all of the PR functions.

The PR functions are formed by building up rules. One can encode the derivation of a PR function as a number. One can then assign to every number a PR function easily.

Let f_1, f_2, \ldots be all of the PR functions.

$$
F(x) = f_x(x) + 1
$$

KORKA SERVER ORA

is computable but not a PR function.

Def Ackermann's function is the function defined by

$$
A(0, y) = y + 1
$$

\n
$$
A(x + 1, 0) = A(x, 1)
$$

\n
$$
A(x + 1, y + 1) = A(x, A(x + 1, y))
$$

K ロ K K B K K R K R H X B K Y Q Q Q Q

Def Ackermann's function is the function defined by

$$
A(0, y) = y + 1
$$

\n
$$
A(x + 1, 0) = A(x, 1)
$$

\n
$$
A(x + 1, y + 1) = A(x, A(x + 1, y))
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

1. A is obviously computable.

Def Ackermann's function is the function defined by

$$
A(0, y) = y + 1
$$

\n
$$
A(x + 1, 0) = A(x, 1)
$$

\n
$$
A(x + 1, y + 1) = A(x, A(x + 1, y))
$$

- 1. A is obviously computable.
- 2. If f is prim rec then it is defined by 8 recursions. Or 18. Or any constant number. But $A(x, y)$ uses y recursions, not a constant.

KID KAP KID KID KID DA GA

Def Ackermann's function is the function defined by

$$
A(0, y) = y + 1
$$

\n
$$
A(x + 1, 0) = A(x, 1)
$$

\n
$$
A(x + 1, y + 1) = A(x, A(x + 1, y))
$$

- 1. A is obviously computable.
- 2. If f is prim rec then it is defined by 8 recursions. Or 18. Or any constant number. But $A(x, y)$ uses y recursions, not a constant.

KORKA SERVER ORA

3. A grows faster than any PR function.

Def Ackermann's function is the function defined by

$$
A(0, y) = y + 1
$$

\n
$$
A(x + 1, 0) = A(x, 1)
$$

\n
$$
A(x + 1, y + 1) = A(x, A(x + 1, y))
$$

- 1. A is obviously computable.
- 2. If f is prim rec then it is defined by 8 recursions. Or 18. Or any constant number. But $A(x, y)$ uses y recursions, not a constant.
- 3. A grows faster than any PR function.
- 4. Since A is defined using a recursion which involves applying the function to itself there is no obvious way to take the definition and make it PR. Not a proof, an intuition.

Ackermann's Function is Natural: Security

KID KAR KE KE KE YA GA

<https://www.ackermansecurity.com/>

Ackermann's Function is Natural: Security

<https://www.ackermansecurity.com/>

They are called Ackerman Security since they claim that a thief would have to take time Ackerman(n) to break in.

KO KA KO KE KA E KA SA KA KA KA KA KA A

DS is Data Structure. A Union-Find DS for sets supports the following operations.

K ロ K K B K K R K R H X B K Y Q Q Q Q

DS is Data Structure. A Union-Find DS for sets supports the following operations. (1) If a is a number then make $\{a\}$ a set.

KID KAP KID KID KID DA GA

DS is Data Structure.

A Union-Find DS for sets supports the following operations.

KORKA SERVER ORA

(1) If a is a number then make $\{a\}$ a set.

(2) If A, B are sets then make $A \cup B$ a set.

DS is Data Structure.

A **Union-Find DS** for sets supports the following operations.

- (1) If a is a number then make $\{a\}$ a set.
- (2) If A, B are sets then make $A \cup B$ a set.
- (3) Given x find which, if any, set it is in.

DS is Data Structure.

A **Union-Find DS** for sets supports the following operations.

(1) If a is a number then make $\{a\}$ a set.

(2) If A, B are sets then make $A \cup B$ a set.

(3) Given x find which, if any, set it is in.

 \triangleright There is a DS for this problem that can do *n* operations in $nA^{-1}(n, n)$ steps.

DS is Data Structure.

A **Union-Find DS** for sets supports the following operations.

(1) If a is a number then make $\{a\}$ a set.

(2) If A, B are sets then make $A \cup B$ a set.

(3) Given x find which, if any, set it is in.

 \triangleright There is a DS for this problem that can do *n* operations in $nA^{-1}(n, n)$ steps.

KORKA SERVER ORA

 \triangleright One can show that there is no better DS.

DS is Data Structure.

A **Union-Find DS** for sets supports the following operations.

(1) If a is a number then make $\{a\}$ a set.

(2) If A, B are sets then make $A \cup B$ a set.

(3) Given x find which, if any, set it is in.

 \triangleright There is a DS for this problem that can do *n* operations in $nA^{-1}(n, n)$ steps.

KORKA SERVER ORA

 \triangleright One can show that there is no better DS.

So $nA^{-1}(n, n)$ is the exact upper and lower bound!
More Natural Examples of Non-Prim Rec Fns

More natural examples of non-prim rec functions:

KID KAR KE KE KE YA GA

More Natural Examples of Non-Prim Rec Fns

More natural examples of non-prim rec functions:

KORK ERKER ADAM ADA

1. Goodstein Sequences (next slide packet).

More Natural Examples of Non-Prim Rec Fns

More natural examples of non-prim rec functions:

- 1. Goodstein Sequences (next slide packet).
- 2. Finite Version of Kruskal's Tree Theorem.

KORKA SERVER ORA

Writing a number as a sum of powers of 2.

$$
1000=2^9+2^8+2^7+2^6+2^5+2^3\\
$$

KID KAP KID KID KID DA GA

Writing a number as a sum of powers of 2.

$$
1000=2^9+2^8+2^7+2^6+2^5+2^3\\
$$

But we can also write the exponents as sums of powers of 2

$$
1000=2^{2^3+2^0}+2^{2^3}+2^{2^2+2^1+2^0}+2^{2^2+2^1}+2^{2^2+2^0}+2^{2^1+2^0}\\
$$

KID KAP KID KID KID DA GA

Writing a number as a sum of powers of 2.

$$
1000=2^9+2^8+2^7+2^6+2^5+2^3\\
$$

But we can also write the exponents as sums of powers of 2

$$
1000 = 2^{2^3+2^0} + 2^{2^3} + 2^{2^2+2^1+2^0} + 2^{2^2+2^1} + 2^{2^2+2^0} + 2^{2^1+2^0}
$$

We can even write the exponents that are not already powers of 2 as sums of powers of 2.

$$
1000=2^{2^{2^{\cdot 0}}+2^0}+2^{2^{2^1+2^0}}+2^{2^2+2^{2^0}+2^0}+2^{2^2+2^{2^0}}+2^{2^2+2^0}+2^{2^{2^0}+2^{0^0}}
$$

KORKA SERVER ORA

Writing a number as a sum of powers of 2.

$$
1000=2^9+2^8+2^7+2^6+2^5+2^3\\
$$

But we can also write the exponents as sums of powers of 2

$$
1000 = 2^{2^3+2^0} + 2^{2^3} + 2^{2^2+2^1+2^0} + 2^{2^2+2^1} + 2^{2^2+2^0} + 2^{2^1+2^0}
$$

We can even write the exponents that are not already powers of 2 as sums of powers of 2.

$$
1000=2^{2^{2^{\cdot 0}}+2^0}+2^{2^{2^1+2^0}}+2^{2^2+2^{2^0}+2^0}+2^{2^2+2^{2^0}}+2^{2^2+2^0}+2^{2^{2^0}+2^{0^0}}
$$

KORKA SERVER ORA

This is called **Hereditary Base** n **Notation**

 $1000 = 2^{2^{2^0+2^0}+2^0}+2^{2^{2^1+2^0}}+2^{2^2+2^{2^0}+2^0}+2^{2^2+2^{2^0}}+2^{2^2+2^0}+2^{2^{2^0}+2^0}$ Replace all of the 2's with 3's:

 ${1000} = {3^{3^{3^0}+3^0}+3^0}+{3^{3^{3^1+3^0}}+3^{3^3+3^{3^0}+3^0}+3^{3^3+3^{3^0}}+3^{3^3+3^0}+3^{3^3+3^0}+3^{3^3^0+3^0}}$

KO KA KO KE KA E KA SA KA KA KA KA KA A

 $1000 = 2^{2^{2^0+2^0}+2^0}+2^{2^{2^1+2^0}}+2^{2^2+2^{2^0}+2^0}+2^{2^2+2^{2^0}}+2^{2^2+2^0}+2^{2^{2^0}+2^0}$ Replace all of the 2's with 3's:

 ${1000} = {3^{3^{3^0}+3^0}+3^0}+{3^{3^{3^1+3^0}}+3^{3^3+3^{3^0}+3^0}+3^{3^3+3^{3^0}}+3^{3^3+3^0}+3^{3^3+3^0}+3^{3^3^0+3^0}}$ This number just went WAY up. Now subtract 1.

 ${1000} = {3^{3^{3^0}+3^0}+3^0}+3^{3^{3^1+3^0}}+3^{3^3+3^{3^0}+3^0}+3^{3^3+3^{3^0}}+3^{3^3+3^0}+3^{3^3+3^0}+3^{3^3+3^0}-1$

KO KA KO KE KA E KA SA KA KA KA KA KA A

 $1000 = 2^{2^{2^0+2^0}+2^0}+2^{2^{2^1+2^0}}+2^{2^2+2^{2^0}+2^0}+2^{2^2+2^{2^0}}+2^{2^2+2^0}+2^{2^{2^0}+2^0}$ Replace all of the 2's with 3's:

 ${1000} = {3^{3^{3^0}+3^0}+3^0}+{3^{3^{3^1+3^0}}+3^{3^3+3^{3^0}+3^0}+3^{3^3+3^{3^0}}+3^{3^3+3^0}+3^{3^3+3^0}+3^{3^3^0+3^0}}$

This number just went WAY up. Now subtract 1.

$$
1000=3^{3^{3^0}+3^0}+3^{3^{3^1+3^0}}+3^{3^3+3^{3^0}+3^0}+3^{3^3+3^{3^0}}+3^{3^3+3^0}+3^{3^3+3^0}+3^{3^{3^0}+3^0}-1\\
$$

Repeat the process: Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract $1, \cdots$.

KORKAR KERKER DRA

 $1000 = 2^{2^{2^0+2^0}+2^0}+2^{2^{2^1+2^0}}+2^{2^2+2^{2^0}+2^0}+2^{2^2+2^{2^0}}+2^{2^2+2^0}+2^{2^{2^0}+2^0}$ Replace all of the 2's with 3's:

 ${1000} = {3^{3^{3^0}+3^0}+3^0}+{3^{3^{3^1+3^0}}+3^{3^3+3^{3^0}+3^0}+3^{3^3+3^{3^0}}+3^{3^3+3^0}+3^{3^3+3^0}+3^{3^3^0+3^0}}$

This number just went WAY up. Now subtract 1.

$$
1000=3^{3^{3^{\scriptstyle 0}}+3^{\scriptstyle 0}}+3^{3^{\scriptstyle 3^{\scriptstyle 1}}+3^{\scriptstyle 0}}+3^{3^{3+3^{\scriptstyle 0}}+3^{3^{\scriptstyle 0}}+3^{\scriptstyle 0}}+3^{3^{3+3^{\scriptstyle 0}}}+3^{3^{3+3^{\scriptstyle 0}}}+3^{3^{3^{\scriptstyle 0}}+3^{\scriptstyle 0}}-1
$$

Repeat the process:

Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract $1, \cdots$. **Vote** Does the sequence:

- \triangleright Goto infinity (and if so how fast- perhaps Ack-like?)
- \triangleright Eventually stabilizes (e.g., goes to 18 and then stops there)
- \triangleright \triangleright \triangleright Cycles- goes UP [th](#page-81-0)en [D](#page-78-0)[O](#page-82-0)[W](#page-83-0)[N](#page-0-0) then UP then DOWN [.](#page-92-0) ...

The Sequence. . .

K ロ X x 4D X X B X X B X X D X O Q O

The Sequence. . .

goes to 0.

goes to 0.

The number of steps for *n* to goto 0 is **much bigger** than $A(n, n)$.

Vote

KO KKOKKEKKEK E DAG

1. $R_3(k)$ is in PR_3 (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

1. $R_3(k)$ is in PR_3 (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN **YES**

KID KIN KE KAEK LE I DAG

1. $R_3(k)$ is in PR_3 (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN **YES** We will show $R_3(k) \leq 2^{2^{O(k)}}$.

KID KAR KE KE KE YA GA

1. $R_3(k)$ is in PR_3 (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN **YES** We will show $R_3(k) \leq 2^{2^{O(k)}}$.

KORK ERKER ADAM ADA

2. $R_a(k)$ is PR. YES, NO, UNKNOWN 1. $R_3(k)$ is in PR_3 (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN **YES** We will show $R_3(k) \leq 2^{2^{O(k)}}$.

KORK ERKER ADAM ADA

2. $R_a(k)$ is PR. YES, NO, UNKNOWN YES

- 1. $R_3(k)$ is in PR_3 (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN **YES** We will show $R_3(k) \leq 2^{2^{O(k)}}$.
- 2. $R_a(k)$ is PR. YES, NO, UNKNOWN **YES** We will "show" $R_a(k)$ is \leq stack-of- $(a-1)$ 2's.

KORKA SERVER ORA