Application of Ramsey Theory to Multiparty Comm Complexity

Exposition by William Gasarch

April 15, 2022

Credit where Credit is Due

The results in this talk are due to Chandra, Furst, Lipton. Multi-Party Protocols Proc of the 15th ACM Syp on Theory of Comp (STOC) 1983

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Alice is A, Bob is B, Carol is C.

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

2. A's forehead has a, B's has b, C's has c.

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

- 2. A's forehead has a, B's has b, C's has c.
- 3. They want to know if $a + b + c = 2^{n+1} 1$.

Alice is A, Bob is B, Carol is C.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. A's forehead has a, B's has b, C's has c.
- 3. They want to know if $a + b + c = 2^{n+1} 1$.
- 4. Solution A says b, B then computes a + b + c and then says YES if $a + b + c = 2^{n+1} 1$, NO if not.

Alice is A, Bob is B, Carol is C.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. A's forehead has a, B's has b, C's has c.
- 3. They want to know if $a + b + c = 2^{n+1} 1$.
- 4. Solution A says b, B then computes a + b + c and then says YES if $a + b + c = 2^{n+1} 1$, NO if not.

5. Solution uses n + 1 bits of comm. Can do better?

1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do. The proof uses Theorems that could be in this course.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do. The proof uses Theorems that could be in this course.
- 2. There is a protocol that takes αn bits for some $\alpha < 1$ but any protocol requires $\Omega(n)$ bits. Either the proof of the upper bound or the proof of the lower bound or both use Theorems that could be in this course.

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do. The proof uses Theorems that could be in this course.
- 2. There is a protocol that takes αn bits for some $\alpha < 1$ but any protocol requires $\Omega(n)$ bits. Either the proof of the upper bound or the proof of the lower bound or both use Theorems that could be in this course.

3. There is a protocol that takes $\ll n$ bits. The proof uses Theorems that could be in this course.

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do. The proof uses Theorems that could be in this course.
- 2. There is a protocol that takes αn bits for some $\alpha < 1$ but any protocol requires $\Omega(n)$ bits. Either the proof of the upper bound or the proof of the lower bound or both use Theorems that could be in this course.

3. There is a protocol that takes $\ll n$ bits. The proof uses Theorems that could be in this course.

STUDENTS WORK IN GROUPS

Protocol in $\frac{n}{2} + O(1)$ bits

1. A:
$$a_0 \cdots a_{n-1}$$
, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.

- 2. A says: $b_{n-1} \oplus c_0, b_{n-2} \oplus c_1, \cdots, b_{n/2} \oplus c_{n/2-1}$.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$.
- 4. Carol knows b_i 's so she now knows $c_0, \ldots, c_{n/2-1}$.
- 5. Carol knows $a_0, \ldots, a_{n/2-1}, b_0, \ldots, b_{n/2-1}, c_0, \ldots, c_{n/2-1}$. Hence she can compute

 $a_{n/2-1} \cdots a_0 + b_{n/2-1} \cdots b_0 + c_{n/2-1} \cdots c_0.$ View this as an (n/2)-bit string s and a carry bit z.

- 6. $s = 1^{n/2}$: Carol says (MAYBE, z). Otherwise: Carol says NO.
- 7. Bob knows $a_{n/2}, \ldots, a_{n-1}, b_{n/2}, \ldots, b_{n-1}, c_{n/2}, \ldots, c_{n-1}$ and z so he can compute a + b + c. If = M then say YES, if not then say NO.

Vote

Vote

► There is a protocol that uses ≪ n bits AND I use Ramsey Theory to prove it.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vote

- ► There is a protocol that uses ≪ n bits AND I use Ramsey Theory to prove it.
- There exists a $0 < \beta < \frac{1}{2}$ such that **any** protocol requires $\geq \beta n$ bits AND I use Ramsey Theory to prove it.

Vote

- ► There is a protocol that uses ≪ n bits AND I use Ramsey Theory to prove it.
- ► There exists a $0 < \beta < \frac{1}{2}$ such that **any** protocol requires $\geq \beta n$ bits AND I use Ramsey Theory to prove it.

I will show a $\sqrt{n} \ll n$ protocol, which will use 3-free sets so will indeed use Ramsey Theory.

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary. *L*-**Theorem** For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg .

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary. *L*-**Theorem** For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg . Fix *M*. **Q** ($\exists c$): $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary. *L*-Theorem For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg . Fix *M*. **Q** ($\exists c$): $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ? Yes $c = M^2$, color every point differently.

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary. *L*-Theorem For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg . Fix *M*. **Q** ($\exists c$): $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ? Yes $c = M^2$, color every point differently. **Q** ($\exists c \ll M^2$): $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Notation M will be $2^{n+1} - 1$ which is 1^{n+1} in binary. *L*-**Theorem** For all c there exists M such that for all c-colorings of $[M] \times [M]$ there exists a mono L or \neg . Fix M.

Q $(\exists c)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes $c = M^2$, color every point differently.

Q $(\exists c \ll M^2)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes, c = M, color every row differently.

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary.

L-Theorem For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg .

Fix M.

Q $(\exists c)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes $c = M^2$, color every point differently.

Q $(\exists c \ll M^2)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes, c = M, color every row differently.

Q ($\exists c$): ALL *c*-colorings of [*M*] × [*M*] there is a mono *L* or \neg ?

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary.

L-Theorem For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg .

Fix M.

Q $(\exists c)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes $c = M^2$, color every point differently.

Q $(\exists c \ll M^2)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \urcorner ?

Yes, c = M, color every row differently.

Q ($\exists c$): ALL *c*-colorings of $[M] \times [M]$ there is a mono *L* or \neg ? **Yes** c = 1. Stupid but true.

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary.

L-Theorem For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg .

Fix M.

Q $(\exists c)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes $c = M^2$, color every point differently.

Q $(\exists c \ll M^2)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \urcorner ?

Yes, c = M, color every row differently.

Q ($\exists c$): ALL *c*-colorings of [*M*] × [*M*] there is a mono *L* or \neg ?

Yes c = 1. Stupid but true.

We actually need a stronger condition:

Definition $\Gamma(M)$ is the least *c* such that there is a *c*-coloring of $[M] \times [M]$ w/o mono *L* or \neg .

Notation *M* will be $2^{n+1} - 1$ which is 1^{n+1} in binary.

L-Theorem For all *c* there exists *M* such that for all *c*-colorings of $[M] \times [M]$ there exists a mono *L* or \neg .

Fix M.

Q $(\exists c)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \neg ?

Yes $c = M^2$, color every point differently.

Q $(\exists c \ll M^2)$: $[M] \times [M]$ can be *c*-colored w/o mono *L* or \urcorner ?

Yes, c = M, color every row differently.

Q ($\exists c$): ALL *c*-colorings of [*M*] × [*M*] there is a mono *L* or \neg ?

Yes c = 1. Stupid but true.

We actually need a stronger condition:

Definition $\Gamma(M)$ is the least *c* such that there is a *c*-coloring of $[M] \times [M]$ w/o mono *L* or \neg .

We give a $3 \lg(\Gamma(M)) + O(1)$ bit protocol and then bound $\Gamma(M)$.

Protocol

 $M = 2^{n+1} - 1$ throughout.

- Pre-step: A, B, and C agree on a Γ(M)-coloring χ of [M] × [M] that has no mono L or ¬.
- 2. A: b, c, B: a, c, C:a, b. $a, b, c \in \{0, 1\}^n$ numbers in binary.
- 3. If A sees b + c > M, says NO and protocol stops. B,C, sim.
- 4. A finds a', s.t. a' + b + c = M and says $\chi(a', b)$.
- 5. B finds b' s.t. a + b' + c = M and says $\chi(a, b')$.
- 6. C says Y if both colors agree with $\chi(a, b)$, no otherwise.
- 7. If they all broadcast the same color A says Y, else A says NO.

Protocol

 $M = 2^{n+1} - 1$ throughout.

- Pre-step: A, B, and C agree on a Γ(M)-coloring χ of [M] × [M] that has no mono L or ¬.
- 2. A: b, c, B: a, c, C:a, b. a, b, $c \in \{0,1\}^n$ numbers in binary.
- 3. If A sees b + c > M, says NO and protocol stops. B,C, sim.
- 4. A finds a', s.t. a' + b + c = M and says $\chi(a', b)$.
- 5. B finds b' s.t. a + b' + c = M and says $\chi(a, b')$.
- 6. C says Y if both colors agree with $\chi(a, b)$, no otherwise.

7. If they all broadcast the same color A says Y, else A says NO. Number of bits: $2 \lg(\Gamma(M)) + O(1)$. We show this is $\leq O(\sqrt{n})$.

Protocol

 $M = 2^{n+1} - 1$ throughout.

- Pre-step: A, B, and C agree on a Γ(M)-coloring χ of [M] × [M] that has no mono L or ¬.
- 2. A: b, c, B: a, c, C:a, b. a, b, $c \in \{0,1\}^n$ numbers in binary.
- 3. If A sees b + c > M, says NO and protocol stops. B,C, sim.
- 4. A finds a', s.t. a' + b + c = M and says $\chi(a', b)$.
- 5. B finds b' s.t. a + b' + c = M and says $\chi(a, b')$.
- 6. C says Y if both colors agree with $\chi(a, b)$, no otherwise.

7. If they all broadcast the same color A says Y, else A says NO. Number of bits: $2 \lg(\Gamma(M)) + O(1)$. We show this is $\leq O(\sqrt{n})$. But first we show that it works.

Assume $a + b + c = M - \lambda$ where $\lambda \in \mathbb{Z}$.

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

 $b' = b + \lambda$ (similar reasoning)

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$
 $b' = b + \lambda$ (similar reasoning)
 $(a', b) = (a + \lambda, b)$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$
 $b' = b + \lambda$ (similar reasoning)
 $(a', b) = (a + \lambda, b)$
 $(a, b') = (a, b + \lambda)$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$
 $b' = b + \lambda$ (similar reasoning)
 $(a', b) = (a + \lambda, b)$
 $(a, b') = (a, b + \lambda)$
If protocol says YES then $\chi(a + \lambda, b) = \chi(a, b + \lambda) = \chi(a, b)$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Since χ has no mono L or \neg , $\lambda = 0$ so a + b + c = M.

Why Does This Work?

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$
 $b' = b + \lambda$ (similar reasoning)
 $(a', b) = (a + \lambda, b)$
 $(a, b') = (a, b + \lambda)$
If protocol says YES then $\chi(a + \lambda, b) = \chi(a, b + \lambda) = \chi(a, b)$

Since χ has no mono L or \neg , $\lambda = 0$ so a + b + c = M.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If protocol says NO then either $\chi(a + \lambda, b) \neq \chi(a, b + \lambda)$: so $\lambda \neq 0$. $\chi(a + \lambda, b) \neq \chi(a, b)$: so $\lambda \neq 0$. $\chi(a, b + \lambda) \neq \chi(a, b)$: so $\lambda \neq 0$.

Why Does This Work?

Assume
$$a + b + c = M - \lambda$$
 where $\lambda \in \mathbb{Z}$.
 $a' = M - b - c = M - (a + b + c) + (a + b + c) - b - c = M - (M - \lambda) + a = a + \lambda$
 $b' = b + \lambda$ (similar reasoning)
 $(a', b) = (a + \lambda, b)$
 $(a, b') = (a, b + \lambda)$
If protocol says YES then $\chi(a + \lambda, b) = \chi(a, b + \lambda) = \chi(a, b)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Since χ has no mono L or \neg , $\lambda = 0$ so a + b + c = M.

If protocol says NO then either $\chi(a + \lambda, b) \neq \chi(a, b + \lambda)$: so $\lambda \neq 0$. $\chi(a + \lambda, b) \neq \chi(a, b)$: so $\lambda \neq 0$. $\chi(a, b + \lambda) \neq \chi(a, b)$: so $\lambda \neq 0$. In all cases $\lambda \neq 0$ so $a + b + c \neq M$.

We need to bound $\lg(\Gamma(M))$.

(ロト (個) (E) (E) (E) (E) のへの

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We need to bound $\lg(\Gamma(M))$. Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \le Z$. Proof

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$. **Proof**

Let *COL* be an *Z*-coloring of $\{1, \ldots, 3M\}$ with no mono 3-AP's.

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$. **Proof**

Let COL be an Z-coloring of $\{1, \ldots, 3M\}$ with no mono 3-AP's. Define $COL': [M] \times [M] \rightarrow [Z]$

COL'(x, y) = COL(x + 2y)

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$. **Proof**

Let *COL* be an *Z*-coloring of $\{1, \ldots, 3M\}$ with no mono 3-AP's. Define $COL': [M] \times [M] \rightarrow [Z]$

$$COL'(x, y) = COL(x + 2y)$$

ション ふゆ アメリア メリア しょうくしゃ

Claim *COL'* has no mono *L*'s or \neg .

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$. **Proof**

Let *COL* be an *Z*-coloring of $\{1, \ldots, 3M\}$ with no mono 3-AP's. Define $COL': [M] \times [M] \rightarrow [Z]$

$$COL'(x, y) = COL(x + 2y)$$

ション ふゆ アメリア メリア しょうくしゃ

Claim *COL'* has no mono *L*'s or \neg . If *COL'* has a mono *L* or \neg then there exists $x, y \in [M], \lambda \in \mathbb{Z}$:

$$COL'(x, y) = COL'(x + \lambda, y) = COL'(x, y + \lambda)$$

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$. **Proof**

Let *COL* be an *Z*-coloring of $\{1, \ldots, 3M\}$ with no mono 3-AP's. Define $COL': [M] \times [M] \rightarrow [Z]$

$$COL'(x, y) = COL(x + 2y)$$

Claim *COL'* has no mono *L*'s or \neg . If *COL'* has a mono *L* or \neg then there exists $x, y \in [M], \lambda \in \mathbb{Z}$:

$$COL'(x, y) = COL'(x + \lambda, y) = COL'(x, y + \lambda)$$
 hence

ション ふゆ アメリア メリア しょうくしゃ

We need to bound $\lg(\Gamma(M))$.

Lemma Let Z be such that 3M < W(3, Z). Then $\Gamma(M) \leq Z$. **Proof**

Let *COL* be an *Z*-coloring of $\{1, \ldots, 3M\}$ with no mono 3-AP's. Define $COL': [M] \times [M] \rightarrow [Z]$

$$COL'(x, y) = COL(x + 2y)$$

Claim *COL'* has no mono *L*'s or \neg . If *COL'* has a mono *L* or \neg then there exists $x, y \in [M], \lambda \in \mathbb{Z}$:

$$COL'(x, y) = COL'(x + \lambda, y) = COL'(x, y + \lambda)$$
 hence

 $COL(x+2y) = COL(x+2y+\lambda) = COL(x+2y+2\lambda)$: a mono 3-AP (If $\lambda < 0$ then $x + 2y + 2\lambda, x + 2y + \lambda, x + 2y$ is the 3-AP.

Recall Last Slide From 3freetalk

In talk on W(3, c) we proved: **Thm** Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Then there is a $\frac{V \ln(V)}{|A|}$ -coloring of [V] with no mono 3-APs. Hence $W(3, \frac{V \ln(V)}{|A|}) \geq V.$

Recall Last Slide From 3freetalk

In talk on W(3, c) we proved: Thm Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Then there is a $\frac{V \ln(V)}{|A|}$ -coloring of [V] with no mono 3-APs. Hence $W(3, \frac{V \ln(V)}{|A|}) \geq V.$

ション ふゆ アメリア メリア しょうくしゃ

In talk on W(3, c) we sketched:

Thm There exists a 3-free subset of [V] of size $\geq V^{1-\frac{1}{\sqrt{\lg V}}}$

Recall Last Slide From 3freetalk

In talk on W(3, c) we proved: Thm Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Then there is a $\frac{V \ln(V)}{|A|}$ -coloring of [V] with no mono 3-APs. Hence $W(3, \frac{V \ln(V)}{|A|}) \geq V.$

In talk on W(3, c) we sketched:

Thm There exists a 3-free subset of [V] of size $\geq V^{1-\frac{1}{\sqrt{\lg V}}}$ We combine these two to get:

Thm Let $V \in \mathbb{N}$. Then there is a $V^{\frac{1}{\sqrt{\lg V}}} \ln(V)$ -coloring of [V] with no mono 3-APs. Hence

$$W(3, V^{\frac{1}{\sqrt{\lg V}}} \ln(V)) \geq V.$$

Just Plug in V = 3M

Thm Let $V \in \mathbb{N}$. Then there is a $V^{\frac{1}{\sqrt{\lg V}}} \ln(V)$ -coloring of [V] with no mono 3-APs. Hence

$$W(3, V^{\frac{1}{\sqrt{\lg V}}} \ln(V)) \ge V.$$

Hence $W(3, (3M)^{\frac{1}{\sqrt{\lg 3M}}} \ln(3M)) \ge 3M.$

Hence
$$\Gamma(M) \leq (3M)^{\frac{1}{\sqrt{\lg 3M}}} \ln(3M))$$

Hence
$$\lg(\Gamma(M)) \leq \frac{1}{\sqrt{\lg 3M}} \lg(3M) + \lg(\ln(3M)) = O(\sqrt{\log(M)})$$

$$M = 2^{n+1} - 1 \sim 2^n$$
 so $\lg(\Gamma(M)) \le O(\sqrt{n})$

Upper and Lower Bound on Protocol

- We showed our protocol uses $\leq 3 \lg(\Gamma(M)) \leq O(\sqrt{n})$.
- Known: lower bound of $\Omega(\lg(\Gamma(M)))$.
- Original paper had lower bound of Ω(1) which is all they needed for their goal which was non-linear lower bounds on branching programs.

- Gasarch showed lower bound of $\Omega(\log \log n)$.
- ▶ *k*-player version of this game has also been studied.