BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

The Infinite Can Ramsey Thm: Mileti's Proof

William Gasarch-U of MD

We gave two proofs of Inf Can Ramsey:

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

We gave two proofs of Inf Can Ramsey:

- ▶ One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

- 1. His interest: He got a more constructive proof of Can Ramsey.
- 2. My interest: educational.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

- 1. His interest: He got a more constructive proof of Can Ramsey.
- 2. My interest: educational.
- 3. My interest: better bounds when finitized.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

- 1. His interest: He got a more constructive proof of Can Ramsey.
- 2. My interest: educational.
- 3. My interest: better bounds when finitized.
- 4. This finization has never been written up. Will be an extra credit project.

Min-Homog, Max-Homog, Rainbow

Def: Let $COL: \binom{\mathbb{N}}{2} \to \omega$. Let $V \subseteq \mathbb{N}$. Assume a < b and c < d.

- \triangleright V is homog if COL(a, b) = COL(c, d) iff TRUE.
- ▶ *V* is min-homog if COL(a, b) = COL(c, d) iff a = c.
- ▶ *V* is max-homog if COL(a, b) = COL(c, d) iff b = d.
- ightharpoonup V is rainb if COL(a,b) = COL(c,d) iff a=c and b=d.

Can Ramsey Thm for $\binom{N}{2}$: For all $COL:\binom{N}{2}\to\omega$, there exists an infinite set V such that either V is homog, min-homog, max-homog, or rainb.

Notation

 $(\exists^{\infty} x \in A)$ means for an infinite number of $x \in A$

Notation

 $(\exists^{\infty} x \in A)$ means for an infinite number of $x \in A$

 $(\forall^{\infty}x \in A)$ means for all but a finite number of $x \in A$

The following notation will make later cases similar to this case.

$$V_1 = N$$

$$x_1 = 1$$

Have
$$COL: \binom{V_1}{2} \to \omega$$
.

The following notation will make later cases similar to this case.

 $V_1 = N$

 $x_1 = 1$

Have $COL: \binom{V_1}{2} \to \omega$.

One of the following happens:

The following notation will make later cases similar to this case.

$$V_1 = N$$

$$x_1 = 1$$

Have
$$COL: \binom{V_1}{2} \to \omega$$
.

One of the following happens:

$$(\exists c \in \omega)(\exists^{\infty} y \in V_1)[COL(x_1, y) = c].$$

The following notation will make later cases similar to this case.

 $V_1 = N$ $x_1 = 1$ Have $COL: \binom{V_1}{2} \to \omega$.

One of the following happens:

 $(\exists c \in \omega)(\exists^{\infty} y \in V_1)[COL(x_1, y) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c)$. Similar to 1st step of Inf Ramsey.

The following notation will make later cases similar to this case.

```
V_1=\mathsf{N} x_1=1 Have COL: \binom{V_1}{2} \to \omega. One of the following happens:
```

- $| \exists c \in \omega) (\exists x \in V_1) [COL(x_1, y) = c].$
 - $(\exists c \in \omega)(\exists^{\infty}y \in V_1)[COL(x_1, y) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c).$ Similar to 1st step of Inf Ramsey.
 - ▶ $(\forall c \in \omega)(\forall^{\infty}y \in V_1)[COL(x_1, y) \neq c]$. For every color c the set of y with $COL(x_1, y) = c$ is finite.

The following notation will make later cases similar to this case.

```
V_1 = N
x_1 = 1
Have COL: \binom{V_1}{2} \to \omega.
```

One of the following happens:

- $(\exists c \in \omega)(\exists^{\infty} v \in V_1)[COL(x_1, v) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c)$. Similar to 1st step of Inf Ramsey.
- $\forall c \in \omega$ $(\forall c \in \omega)(\forall^{\infty} v \in V_1)[COL(x_1, v) \neq c]$. For every color c the set of y with $COL(x_1, y) = c$ is finite. Kill duplicates, so in new set $COL(x_1,?)$ are all different. $COL'(x_1) = (RB, 1)$. Similar to proof of 1-ary Can Ramsey.

The following notation will make later cases similar to this case.

$$V_1=\mathsf{N}$$
 $x_1=1$ Have $COL: {V_1\choose 2} o \omega.$

One of the following happens:

- ▶ $(\exists c \in \omega)(\exists^{\infty}y \in V_1)[\mathrm{COL}(x_1,y) = c]$. Kill all those who disagree. $\mathrm{COL}'(x_1) = (\mathrm{H},c)$. Similar to 1st step of Inf Ramsey.
- ▶ $(\forall c \in \omega)(\forall^{\infty}y \in V_1)[\mathrm{COL}(x_1,y) \neq c]$. For every color c the set of y with $\mathrm{COL}(x_1,y) = c$ is finite. Kill duplicates, so in new set $\mathrm{COL}(x_1,?)$ are all different. $\mathrm{COL}'(x_1) = (\mathrm{RB},1)$. Similar to proof of 1-ary Can Ramsey.

In both cases let

 V_2 be the new infinite set.

 x_2 be the least element of V_2 .

Have V_2 and x_2 . Have $COL: \binom{V_2}{2} \to \omega$.

Have V_2 and x_2 . Have $COL: \binom{V_2}{2} \to \omega$.

▶ $(\exists c \in \omega)(\exists^{\infty}y \in V_2)[COL(x_2, y) = c]$. Then restrict to that set and color x_2 with (H, c). Similar to 2nd step of Inf Ram.

Have V_2 and x_2 .

- Have $COL: \binom{V_2}{2} \to \omega$.
 - ▶ $(\exists c \in \omega)(\exists^{\infty}y \in V_2)[COL(x_2, y) = c]$. Then restrict to that set and color x_2 with (H, c). Similar to 2nd step of Inf Ram.
 - $(\forall c \in \omega)(\forall^{\infty}y \in V_2)[COL(x_2,x) \neq c].$

Have V_2 and x_2 . Have $COL: \binom{V_2}{2} \to \omega$.

- ▶ $(\exists c \in \omega)(\exists^{\infty} y \in V_2)[COL(x_2, y) = c]$. Then restrict to that set and color x_2 with (H, c). Similar to 2nd step of Inf Ram.
- $(\forall c \in \omega)(\forall^{\infty} y \in V_2)[COL(x_2, x) \neq c].$
 - For every color c the set of y with $COL(x_2, y) = c$ is finite. Kill duplicates so that $COL(x_2, ?)$ are all different. New set is W. Will not be final V_3 .

Have V_2 and x_2 . Have $COL: \binom{V_2}{2} \to \omega$.

- ▶ $(\exists c \in \omega)(\exists^{\infty} y \in V_2)[COL(x_2, y) = c]$. Then restrict to that set and color x_2 with (H, c). Similar to 2nd step of Inf Ram.
- $(\forall c \in \omega)(\forall^{\infty} y \in V_2)[COL(x_2, x) \neq c].$
 - For every color c the set of y with $COL(x_2, y) = c$ is finite. Kill duplicates so that $COL(x_2, ?)$ are all different. New set is W. Will not be final V_3 .
 - ▶ $COL'(x_2) = (RB, 1)$ if x_1 and x_2 are similar. $COL'(x_2) = (RB, 2)$ if x_1 and x_2 are different. See next slide.

Convention

When we say (H, j) we think of j as a color. We also say $j \in \omega$.

Convention

When we say (H, j) we think of j as a color. We also say $j \in \omega$.

When we say (RB, j) we think of j as an index. We also say $j \in N$.

Convention

When we say (H, j) we think of j as a color. We also say $j \in \omega$.

When we say (RB, j) we think of j as an index. We also say $j \in \mathbb{N}$.

Really $\omega = N$ so they are all numbers.

$$W = \{w_3, w_4, \ldots, \}$$

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- $ightharpoonup \operatorname{COL}(x_1, w_3), \ \operatorname{COL}(x_1, w_4), \ \cdots$ are all different.
- $ightharpoonup \operatorname{COL}(x_2, w_3), \ \operatorname{COL}(x_2, w_4), \ \cdots$ are all different.

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- $ightharpoonup \operatorname{COL}(x_1, w_3), \ \operatorname{COL}(x_1, w_4), \ \cdots$ are all different.
- $ightharpoonup \operatorname{COL}(x_2, w_3)$, $\operatorname{COL}(x_2, w_4)$, \cdots are all different.

One of the following occurs.

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- $ightharpoonup \operatorname{COL}(x_1, w_3)$, $\operatorname{COL}(x_1, w_4)$, \cdots are all different.
- $ightharpoonup \operatorname{COL}(x_2, w_3), \ \operatorname{COL}(x_2, w_4), \ \cdots$ are all different.

One of the following occurs.

1. $(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)]$. Then let $V_3 = \{w \in W : COL(x_1, w) = COL(x_2, w)\}$.

$$W = \{w_3, w_4, \dots, \}$$

Note following

- $ightharpoonup \operatorname{COL}(x_1, w_3)$, $\operatorname{COL}(x_1, w_4)$, \cdots are all different.
- $ightharpoonup \operatorname{COL}(x_2, w_3)$, $\operatorname{COL}(x_2, w_4)$, \cdots are all different.

One of the following occurs.

1. $(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)]$. Then let $V_3 = \{w \in W : COL(x_1, w) = COL(x_2, w)\}$. $COL'(x_2) = (RB, 1)$. Note that $(\forall y \in V_3)[COL(x_1, y) = COL(x_2, y)] \& |V_3| = \infty$

$\mathrm{COL}'(x_1), \mathrm{COL}'(x_2) \in \{(\mathrm{RB},1), (\mathrm{RB},2)\}$

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- $ightharpoonup \operatorname{COL}(x_1, w_3)$, $\operatorname{COL}(x_1, w_4)$, \cdots are all different.
- $ightharpoonup \operatorname{COL}(x_2, w_3)$, $\operatorname{COL}(x_2, w_4)$, \cdots are all different.

One of the following occurs.

- 1. $(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)]$. Then let $V_3 = \{w \in W : COL(x_1, w) = COL(x_2, w)\}$. $COL'(x_2) = (RB, 1)$. Note that $(\forall y \in V_3)[COL(x_1, y) = COL(x_2, y)] \& |V_3| = \infty$
- 2. $(\exists^{\infty} w \in W)[COL(x_1, w) \neq COL(x_2, w)]$. Then let $V_3 = \{w \in W : COL(x_1, w) \neq COL(x_2, w)\}$.

$$W = \{w_3, w_4, \dots, \}$$

Note following

- $ightharpoonup \operatorname{COL}(x_1, w_3), \ \operatorname{COL}(x_1, w_4), \ \cdots$ are all different.
- $ightharpoonup \operatorname{COL}(x_2, w_3), \ \operatorname{COL}(x_2, w_4), \ \cdots$ are all different.

One of the following occurs.

- 1. $(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)]$. Then let $V_3 = \{w \in W : COL(x_1, w) = COL(x_2, w)\}$. $COL'(x_2) = (RB, 1)$. Note that $(\forall y \in V_3)[COL(x_1, y) = COL(x_2, y)] \& |V_3| = \infty$
- 2. $(\exists^{\infty} w \in W)[\operatorname{COL}(x_1, w) \neq \operatorname{COL}(x_2, w)]$. Then let $V_3 = \{w \in W \colon \operatorname{COL}(x_1, w) \neq \operatorname{COL}(x_2, w)\}$. $\operatorname{COL}'(x_2) = (\operatorname{RB}, 2)$. Note that $(\forall y \in V_3)[\operatorname{COL}(x_1, y) \neq \operatorname{COL}(x_2, y)] \& |V_3| = \infty$

Third Step, ith Step

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 .

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 . HW: Do third step.

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 . HW: Do third step. After third step $\mathrm{COL}'(x_3) \in \{(\mathrm{H},j) \colon j \in \omega\} \cup \{(\mathrm{RB},j) \colon j \leq 3\}.$ V_4 will be infinite.

 V_3 is defined and is infinite. x_1, x_2 are colored.

 x_3 is least element of V_3 .

HW: Do third step.

After third step

 $COL'(x_3) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \leq 3\}.$

 V_4 will be infinite.

 V_i is defined and is infinite. x_1, \ldots, x_{i-1} are colored.

 x_i is least element of V_i .

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 . HW: Do third step. After third step $\mathrm{COL}'(x_3) \in \{(\mathrm{H},j) \colon j \in \omega\} \cup \{(\mathrm{RB},j) \colon j \leq 3\}.$ V_4 will be infinite.

 V_i is defined and is infinite. x_1, \ldots, x_{i-1} are colored. x_i is least element of V_i . HW: Do ith step.

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 . HW: Do third step. After third step $COL'(x_3) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \leq 3\}.$ V_4 will be infinite. V_i is defined and is infinite. x_1, \ldots, x_{i-1} are colored. x_i is least element of V_i . HW: Do ith step. After ith step $COL'(x_i) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j < i\}.$ V_{i+1} will be infinite.

Recap We have $X = \{x_1, x_2, x_3, ...\}$

```
Recap We have X = \{x_1, x_2, x_3, ...\}
For all x \in X
COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.
```

```
Recap We have X = \{x_1, x_2, x_3, ...\}
For all x \in X
\mathrm{COL}'(x) \in \{(\mathrm{H}, j) \colon j \in \omega\} \cup \{(\mathrm{RB}, j) \colon j \in \mathsf{N}\}.
Key We started with \mathrm{COL} \colon \binom{\mathsf{N}}{2} \to \omega and now have \mathrm{COL}' \colon X \to \omega.
```

Recap We have $X = \{x_1, x_2, x_3, \ldots\}$ For all $x \in X$ $\mathrm{COL}'(x) \in \{(\mathrm{H}, j) \colon j \in \omega\} \cup \{(\mathrm{RB}, j) \colon j \in \mathsf{N}\}.$ Key We started with $\mathrm{COL} \colon \binom{\mathsf{N}}{2} \to \omega$ and now have $\mathrm{COL}' \colon X \to \omega.$

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[COL'(x) = (H, c_0)].$$

$$H = \{x \in X : COL'(x) = (H, c_0)\}$$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ For all $x \in X$ $\mathrm{COL}'(x) \in \{(\mathrm{H}, j) : j \in \omega\} \cup \{(\mathrm{RB}, j) : j \in \mathsf{N}\}.$ Key We started with $\mathrm{COL} : \binom{\mathsf{N}}{2} \to \omega$ and now have $\mathrm{COL}' : X \to \omega$.

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[COL'(x) = (H, c_0)].$$

$$H = \{x \in X : COL'(x) = (H, c_0)\}$$

COL restricted to $\binom{H}{2}$ is always color c_0 .

Recap We have $X = \{x_1, x_2, x_3, \ldots\}$ For all $x \in X$ $\mathrm{COL}'(x) \in \{(\mathrm{H}, j) \colon j \in \omega\} \cup \{(\mathrm{RB}, j) \colon j \in \mathsf{N}\}.$ Key We started with $\mathrm{COL} \colon \binom{\mathsf{N}}{2} \to \omega$ and now have $\mathrm{COL}' \colon X \to \omega.$

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[COL'(x) = (H, c_0)].$$

$$H = \{x \in X : COL'(x) = (H, c_0)\}$$

COL restricted to $\binom{H}{2}$ is always color c_0 . H is homog of color c_0 .

Recap We have $X = \{x_1, x_2, x_3, ...\}$

```
Recap We have X = \{x_1, x_2, x_3, ...\}

COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.
```

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$ Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[\mathrm{COL}'(x)\neq (\mathrm{H},c)].$$

Eliminate Duplicates to get

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$ Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

Eliminate Duplicates to get

$$H = \{h_1, h_2, h_3, \ldots\}$$

where $COL'(h_i) = (H, c_i)$ with c_i 's different.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$ Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $COL'(h_i) = (H, c_i)$ with c_i 's different. H is min-homog.

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[COL'(x) = (H, c_0)].$$

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[COL'(x) = (H, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[COL'(x) = (H, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

If neither happens then H only occurs finite often as 1st coordinate.

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^\infty x \in X)[COL'(x) = (H, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that COL'(x) = (H,?).

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^\infty x \in X)[COL'(x) = (H, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that $\mathrm{COL}'(x) = (H,?)$. Keep the name of the set X too avoid to much notation.

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^\infty x \in X)[COL'(x) = (H, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[COL'(x) \neq (H, c)].$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that $\mathrm{COL}'(x) = (H,?)$. Keep the name of the set X too avoid to much notation.

For Cases 3,4 assume $(\forall x \in X)[COL'(x) = (RB,?)]$.

Recap We have $X = \{x_1, x_2, x_3, ...\}$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL' $(x) \in \{(RB, j) : j \in N\}.$

```
Recap We have X = \{x_1, x_2, x_3, ...\}

COL'(x) \in \{(RB, j) : j \in N\}.

Case 3 (\exists i_0 \in N)(\exists^{\infty} x \in X)[COL'(x) = (RB, i_0)].

H = \{x \in X : COL'(x) = (RB, i_0)\}.
```

H is max-homog.

```
Recap We have X = \{x_1, x_2, x_3, ...\}

COL'(x) \in \{(RB, j) : j \in N\}.

Case 3 (\exists i_0 \in N)(\exists^{\infty} x \in X)[COL'(x) = (RB, i_0)].

H = \{x \in X : COL'(x) = (RB, i_0)\}.
```

Recap We have $X = \{x_1, x_2, x_3, ...\}$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL' $(x) \in \{(RB, j) : j \in N\}.$

Recap We have $X = \{x_1, x_2, x_3, \ldots\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have:

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)]$. Eliminate Duplicates to get

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL'(x) $\in \{(RB, j) : j \in N\}$.

If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)]$. Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL' $(x) \in \{(RB, j) : j \in N\}$. If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[\mathrm{COL}'(x) \neq (\mathrm{RB},i)]$. Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different. So where are we now? Let a < b < c.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL' $(x) \in \{(RB, j) : j \in N\}$. If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[\mathrm{COL}'(x) \neq (\mathrm{RB},i)]$. Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different.

So where are we now?

Let a < b < c.

All of the edges out of h_a to the right, are different from each other.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL' $(x) \in \{(RB, j) : j \in N\}$. If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[\mathrm{COL}'(x) \neq (\mathrm{RB},i)]$. Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different.

So where are we now?

Let a < b < c.

- All of the edges out of h_a to the right, are different from each other.
- $ightharpoonup \operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$

If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[\mathrm{COL}'(x) \neq (\mathrm{RB},i)]$. Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different.

So where are we now?

Let a < b < c.

- All of the edges out of h_a to the right, are different from each other.
- $ightharpoonup \operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$

So is H a rainbow set?

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL' $(x) \in \{(RB, j) : j \in N\}$. If Case 1,2,3 do not occur then have:

Case 4

 $(\forall x)(\forall^{\infty}i)[\mathrm{COL}'(x) \neq (\mathrm{RB},i)]$. Eliminate Duplicates to get

$$H=\{h_1,h_2,h_3,\ldots\}$$

where $\mathrm{COL}'(h_j) = (\mathrm{RB}, c_j)$ with c_j 's different.

So where are we now?

Let a < b < c.

- All of the edges out of h_a to the right, are different from each other.
- $ightharpoonup \operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$

So is H a rainbow set?

No. Counterexample on next slide.

 $\mathrm{COL}: \binom{N}{2} \to \omega$

$$\operatorname{COL}:\binom{N}{2}\to\omega$$

$$COL(i,j) = |i - j|$$

Let a < b < c.

$$\operatorname{COL}:\binom{N}{2}\to\omega$$

$$COL(i,j) = |i - j|$$

Let a < b < c.

▶ All of the edges out of *a* to the right are different from each other.

$$\operatorname{COL}:\binom{N}{2} \to \omega$$

$$COL(i,j) = |i - j|$$

Let a < b < c.

- ▶ All of the edges out of *a* to the right are different from each other.
- $ightharpoonup \operatorname{COL}(a,c) \neq \operatorname{COL}(b,c).$

ω th Step, Case 4 (cont)

Recap

$$H=\{\textit{h}_1,\textit{h}_2,\textit{h}_3,\ldots\}$$

Let a < b < c.

ω th Step, Case 4 (cont)

Recap

$$H = \{h_1, h_2, h_3, \ldots\}$$

Let a < b < c.

All of the edges out of h_a to the right are different from each other.

ω th Step, Case 4 (cont)

Recap

$$H = \{h_1, h_2, h_3, \ldots\}$$

Let a < b < c.

- All of the edges out of h_a to the right are different from each other.
- $ightharpoonup \operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$

Claim For all $i \in \mathbb{N}$, c a color, $\deg_c(h_i) \leq 2$.

Proof Assume, BWOC that $\deg_c(h_i) \geq 3$.

Case 1 There two vertices x, y to the right of h_i such that $COL(h_i, x) = COL(h_i, y) = c$. This contradicts that all the edges coming out of h_i are different.

Case 2 There two vertices x, y to the left of h_i such that $COL(x, h_i) = COL(y, h_i) = c$. This contradicts that x and y disagree.

End of Proof of Claim

Last Step: Another Construction

Recall

Lemma Let X be infinite. Let $COL: {X \choose 2} \to \omega$. Let $d \in \omega$. If for every $x \in X$ and $c \in \omega$, $\deg_c(x) \leq d$ then there is an infinite rainb set.

We apply this to our set H with d = 2 to get a rainbow set.