A Variant on R(3) = 6

Exposition by William Gasarch

December 20, 2024

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Credit Where Credit Was Due

(4日) (個) (目) (目) (目) (1000)

Credit Where Credit Was Due

The questions raised in these slides are due to Paul Erdös.

Credit Where Credit Was Due

The questions raised in these slides are due to Paul Erdös.

The Theorem in these slides is due to Irving .

Reminder of Terminology

Def Let G = (V, E) be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Reminder of Terminology

Def Let G = (V, E) be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

Convention RAM(G, 2, 3) will be denoted RAM(G).

Reminder of Terminology

Def Let G = (V, E) be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

Convention RAM(G, 2, 3) will be denoted RAM(G). We will mostly be studying RAM(G, 2, 3).

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

Questions

Questions

Is there a graph G w/o a K_6 -subgraph such that RAM(G)?

Questions

Is there a graph G w/o a K_6 -subgraph such that RAM(G)? Last Lecture We showed Yes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Questions

Is there a graph G w/o a K_6 -subgraph such that RAM(G)? Last Lecture We showed Yes. The graph had 9 vertices.

Questions

Is there a graph G w/o a K_6 -subgraph such that RAM(G)? Last Lecture We showed Yes. The graph had 9 vertices.

Is there a graph G w/o a K_5 -subgraph such that RAM(G)?

ション ふゆ アメビア メロア しょうくしゃ

Questions

Is there a graph G w/o a K_6 -subgraph such that RAM(G)? Last Lecture We showed Yes. The graph had 9 vertices.

Is there a graph G w/o a K_5 -subgraph such that RAM(G)? Vote:

ション ふゆ アメビア メロア しょうくしゃ

Questions

Is there a graph G w/o a K_6 -subgraph such that RAM(G)? Last Lecture We showed Yes. The graph had 9 vertices.

Is there a graph G w/o a K_5 -subgraph such that RAM(G)? Vote: YES or NO or UNKNOWN TO SCIENCE.

ション ふゆ アメビア メロア しょうくしゃ

There IS a graph G such that RAM(G) holds and

(ロト (個) (E) (E) (E) (E) のへの

There IS a graph G such that RAM(G) holds and K_5 is NOT a subgraph of G, and

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

There IS a graph G such that RAM(G) holds and K_5 is NOT a subgraph of G, and

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Vote on the Size of the Smallest Known G

There IS a graph G such that RAM(G) holds and K_5 is NOT a subgraph of G, and

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

There IS a graph G such that RAM(G) holds and K_5 is NOT a subgraph of G, and

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

There IS a graph G such that RAM(G) holds and K_5 is NOT a subgraph of G, and

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

 $\sim A(10, 10)$ vertices where A is Ackerman's function.

There IS a graph G such that RAM(G) holds and K_5 is NOT a subgraph of G, and

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

 $\sim A(10, 10)$ vertices where A is Ackerman's function. Answer on next slide.

The Size of G

The smallest known graph has

The Size of G

The smallest known graph has

(ロト (個) (E) (E) (E) (E) のへの

18 vertices!

The Size of G

The smallest known graph has

18 vertices!

Known There is no such graph of size ≤ 10 (Lin).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The smallest known graph has

18 vertices!

Known There is no such graph of size \leq 10 (Lin). Closing that gap is open.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

The smallest known graph has

18 vertices!

Known There is no such graph of size ≤ 10 (Lin). Closing that gap is open.

We show the graph G and prove RAM(G).

Detour: Vertex Ramsey Theory

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall For all k there exists n such that

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Recall For all k there exists n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Recall For all k there exists n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$

Recall For all k there exists n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists homog set size k.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Recall For all k there exists n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists homog set size k.

We are coloring edges.

Recall For all k there exists n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists homog set size k.

We are coloring edges.

We could also look at coloring vertices.

Convention If there are k vertices that have the same color and form a clique we call that a **mono** k-clique.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Vertex Ramsey Theory

Convention If there are *k* vertices that have the same color and form a clique we call that a **mono** *k*-**clique**. So **mono** *k*-**clique** is our goal rather than **mono homog**.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Convention If there are *k* vertices that have the same color and form a clique we call that a **mono** *k*-**clique**. So **mono** *k*-**clique** is our goal rather than **mono homog**.

ション ふゆ アメビア メロア しょうくしゃ

Is the following true? For all k there exists n such that

Convention If there are *k* vertices that have the same color and form a clique we call that a **mono** *k*-**clique**. So **mono** *k*-**clique** is our goal rather than **mono homog**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Is the following true? For all k there exists n such that for all colorigs of the vertices of K_n

Convention If there are *k* vertices that have the same color and form a clique we call that a **mono** *k*-**clique**. So **mono** *k*-**clique** is our goal rather than **mono homog**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Is the following true? For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Convention If there are *k* vertices that have the same color and form a clique we call that a **mono** *k*-**clique**. So **mono** *k*-**clique** is our goal rather than **mono homog**.

Is the following true? For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique. Discuss

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique. Take n = 2k - 1. k of the vertices are the same color. They form a mono k-clique.

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take n = 2k - 1. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: n = 2k - 2 does not work (easy).

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take n = 2k - 1. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: n = 2k - 2 does not work (easy).

The field seems like a dead end.

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take n = 2k - 1. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: n = 2k - 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take n = 2k - 1. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: n = 2k - 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on. Not so fast!

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take n = 2k - 1. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: n = 2k - 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on. Not so fast! What if we start a graph other than K_n ?

Let $k \in \mathbb{N}$, $k \geq 3$.

Let $k \in \mathbb{N}$, $k \geq 3$. Want a graph G = (V, E) such that

Let $k \in \mathbb{N}$, $k \ge 3$. Want a graph G = (V, E) such that $\forall \text{ COL: } V \rightarrow [2] \exists \text{ mono } k\text{-clique.}$

Let $k \in \mathbb{N}$, $k \ge 3$. Want a graph G = (V, E) such that $\forall \text{ COL} \colon V \rightarrow [2] \exists \text{ mono } k\text{-clique.}$ G does not contain a clique of size 2k - 1.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Let $k \in \mathbb{N}$, $k \ge 3$. Want a graph G = (V, E) such that $\forall \text{ COL: } V \rightarrow [2] \exists \text{ mono } k\text{-clique.}$ G does not contain a clique of size 2k - 1. We may put other restrictions on the G

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Let $k \in \mathbb{N}$, $k \geq 3$.

Want a graph G = (V, E) such that

 $\forall \text{ COL: } V \rightarrow [2] \exists \text{ mono } k\text{-clique.}$

G does not contain a clique of size 2k - 1.

We may put other restrictions on the G

G does not contain a clique of size 2k - 2. 2k - 3. How low can you go!

ション ふゆ アメビア メロア しょうくしゃ

Let $k \in \mathbb{N}$, $k \geq 3$.

Want a graph G = (V, E) such that

 \forall COL: $V \rightarrow [2] \exists$ mono *k*-clique.

G does not contain a clique of size 2k - 1.

We may put other restrictions on the G

G does not contain a clique of size 2k - 2. 2k - 3. How low can you go!

ション ふゆ アメビア メロア しょうくしゃ

Try to minimize the number of vertices in G.

Let $k \in \mathbb{N}$, $k \geq 3$.

Want a graph G = (V, E) such that

 \forall COL: $V \rightarrow [2] \exists$ mono *k*-clique.

G does not contain a clique of size 2k - 1.

We may put other restrictions on the G

G does not contain a clique of size 2k - 2. 2k - 3. How low can you go!

Try to minimize the number of vertices in G. Similar to our study of G where 2-coloring edges yields 3-homog set.

Let $k \in \mathbb{N}$, $k \geq 3$.

Want a graph G = (V, E) such that

 \forall COL: $V \rightarrow [2] \exists$ mono *k*-clique.

G does not contain a clique of size 2k - 1.

We may put other restrictions on the G

G does not contain a clique of size 2k - 2. 2k - 3. How low can you go!

Try to minimize the number of vertices in G.

Similar to our study of G where 2-coloring edges yields 3-homog set.

We will use a result in Vertex-Ramsey to help Graph Ramsey.

Thm There exists a graphH = (V, E) such that RAM(G) holds and

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H.

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17.

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17.

Use the graph

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17. Use the graph $V = \{0, ..., 16\}$ (view as \mathbb{Z}_{17} .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17. Use the graph $V = \{0, ..., 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y \text{ is a square mod } 17\}\}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17. Use the graph $V = \{0, ..., 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y \text{ is a square mod } 17\}\}$. Familiar! This is the **R** edges of the graph that showed $R(4) \ge 18$. Hence K_4 is not a subgraph.

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17. Use the graph $V = \{0, ..., 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y \text{ is a square mod } 17\}\}$. Familiar! This is the **R** edges of the graph that showed $R(4) \ge 18$. Hence K_4 is not a subgraph.

Need to show that \forall COL: $V \rightarrow [2] \exists$ mono 3-clique.

Thm There exists a graph H = (V, E) such that RAM(G) holds and K_4 is not a sugraph of H. |V| = 17.Use the graph $V = \{0, \ldots, 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y) : x - y \text{ is a square mod } 17\}\}.$ Familiar! This is the R edges of the graph that showed $R(4) \ge 18$. Hence K_4 is not a subgraph. **Need** to show that \forall COL: $V \rightarrow [2] \exists$ mono 3-clique. That will be a HW.

Back to Graph Ramsey Theory

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graphH = (V, E) such that RAM(G) holds and

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph H = (V, E) such that RAM(G) holds and

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 K_5 is not a sugraph of H.

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph H = (V, E) such that RAM(G) holds and

 K_5 is not a sugraph of H. |V| = 18.

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph H = (V, E) such that RAM(G) holds and

ション ふゆ アメビア メロア しょうくしゃ

 K_5 is not a sugraph of H.

|V| = 18.

G is H with one more vertex and all edges to it. Formally:

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph H = (V, E) such that RAM(G) holds and

 K_5 is not a sugraph of H.

|V| = 18.

G is H with one more vertex and all edges to it. Formally:

H = (V, E). Let $v_0 \notin V$. G = (V', E') where

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph H = (V, E) such that RAM(G) holds and

$$K_5$$
 is not a sugraph of H .

|V| = 18.

G is H with one more vertex and all edges to it. Formally:

H = (V, E). Let $v_0 \notin V$. G = (V', E') where $V' = V \cup \{v_0\}$
G, RAM(G), No K_5 Subgraph

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph H = (V, E) such that RAM(G) holds and

$$K_5$$
 is not a sugraph of H .

|V| = 18.

G is H with one more vertex and all edges to it. Formally:

$$H = (V, E). \text{ Let } v_0 \notin V. \ G = (V', E') \text{ where} \\ V' = V \cup \{v_0\} \\ E' = E \cup \{(v, v_0): v \in V'\}$$

G has No K₅ Subgraph

G does not have K_5 as a subgraph: Assume, BWOC, that *G* has K_5 as a subgraph.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

G does not have K_5 as a subgraph: Assume, BWOC, that G has K_5 as a subgraph. If the K_5 does not have v_0 then K_5 is a subgraph of H,

contradiction.

G does not have K_5 as a subgraph:

Assume, BWOC, that G has K_5 as a subgraph.

If the K_5 does not have v_0 then K_5 is a subgraph of H, contradiction.

If the K_5 does have v_0 then remove v_0 and you have that K_4 is a subgraph of H, contradiciton.

ション ふぼう メリン メリン しょうくしゃ

 $\operatorname{RAM}(G)$: Let $\operatorname{COL}: E' \to [2]$.

RAM(G): Let COL: $E' \rightarrow [2]$. We creat a coloring of the vetices of H.

RAM(G): Let COL: $E' \rightarrow [2]$. We creat a coloring of the vetices of H. COL*: $V \rightarrow [2]$ is defined by

RAM(G): Let COL: $E' \rightarrow [2]$. We creat a coloring of the vetices of H. COL*: $V \rightarrow [2]$ is defined by COL*(v) = COL(v, v_0).

 $\operatorname{RAM}(G)$: Let $\operatorname{COL}: E' \to [2]$.

We creat a coloring of the vetices of H.

$$\operatorname{COL}^* \colon V \to [2]$$
 is defined by $\operatorname{COL}^*(v) = \operatorname{COL}(v, v_0).$

By First Interesting Theorem on Vertex-Ramsey have \exists mono 3-clique.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

 $\operatorname{RAM}(G)$: Let COL: $E' \to [2]$.

We creat a coloring of the vetices of H.

$$\operatorname{COL}^* \colon V \to [2]$$
 is defined by $\operatorname{COL}^*(v) = \operatorname{COL}(v, v_0).$

By First Interesting Theorem on Vertex-Ramsey have \exists mono 3-clique.

See next slide for pictures and grand finale!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 COL^* has 3 R vertics. Hence COL looks like:

 COL^* has 3 R vertics. Hence COL looks like:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 COL^* has 3 ${\sf R}$ vertics. Hence COL looks like:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Hence COL looks like:

 COL^* has 3 ${\sf R}$ vertics. Hence COL looks like:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Hence COL looks like:

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

If any of (1,2), (2,3), (1,3) are **R** then have **R** \triangle .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

If any of (1,2), (2,3), (1,3) are **R** then have **R** \triangle . If all of (1,2), (1,3), (2,3) are **B** then have **B** \triangle .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If any of (1, 2), (2, 3), (1, 3) are **R** then have **R** \triangle . If all of (1, 2), (1, 3), (2, 3) are **B** then have **B** \triangle .

Done!