A Variant on $R(3) = 6$

Exposition by William Gasarch

December 20, 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Credit Where Credit Was Due

イロトメタトメミトメミト ミニのダダ

Credit Where Credit Was Due

The questions raised in these slides are due to Paul Erdös.

Credit Where Credit Was Due

The questions raised in these slides are due to Paul Erdös.

KID KAR KE KE KE KE YA GA

The Theorem in these slides is due to Irving .

Reminder of Terminology

Def Let $G = (V, E)$ be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

KID KAP KID KID KID DA GA

Reminder of Terminology

Def Let $G = (V, E)$ be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a *k*-homog set.

KO KA KO KE KA E KA SA KA KA KA KA KA A

Convention $RAM(G, 2, 3)$ will be denoted $RAM(G)$.

Reminder of Terminology

Def Let $G = (V, E)$ be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a *k*-homog set.

KORKAR KERKER SAGA

Convention $RAM(G, 2, 3)$ will be denoted $RAM(G)$. We will mostly be studying $RAM(G, 2, 3)$.

K ロ X x 4D X X B X X B X X D X Q Q Q Q Q

イロト イ御 トイミト イミト ニミー りんぺ

Questions

Questions

Is there a graph G w/o a K_6 -subgraph such that $RAM(G)$?

Questions

Is there a graph G w/o a K_6 -subgraph such that $RAM(G)$? Last Lecture We showed Yes.

Questions

Is there a graph G w/o a K_6 -subgraph such that $RAM(G)$? Last Lecture We showed Yes. The graph had 9 vertices.

Questions

Is there a graph G w/o a K_6 -subgraph such that $RAM(G)$? Last Lecture We showed Yes. The graph had 9 vertices.

Is there a graph G w/o a K_5 -subgraph such that $RAM(G)$?

Questions

Is there a graph G w/o a K_6 -subgraph such that $RAM(G)$? Last Lecture We showed Yes. The graph had 9 vertices.

Is there a graph G w/o a K_5 -subgraph such that $RAM(G)$? Vote:

Questions

Is there a graph G w/o a K_6 -subgraph such that $RAM(G)$? Last Lecture We showed Yes. The graph had 9 vertices.

Is there a graph G w/o a K_5 -subgraph such that $RAM(G)$? Vote: YES or NO or UNKNOWN TO SCIENCE.

There IS a graph G such that $RAM(G)$ holds and

イロト イ御 トイミト イミト ニミー りんぺ

There IS a graph G such that $RAM(G)$ holds and K_5 is NOT a subgraph of G, and

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

There IS a graph G such that $RAM(G)$ holds and K_5 is NOT a subgraph of G, and

KID KAP KID KID KID DA GA

Vote on the Size of the Smallest Known G

There IS a graph G such that $RAM(G)$ holds and K_5 is NOT a subgraph of G, and

KORK ERKER ADAM ADA

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

There IS a graph G such that $RAM(G)$ holds and K_5 is NOT a subgraph of G, and

KORK ERKER ADAM ADA

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

There IS a graph G such that $RAM(G)$ holds and K_5 is NOT a subgraph of G, and

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

 $\sim A(10, 10)$ vertices where A is Ackerman's function.

There IS a graph G such that $RAM(G)$ holds and K_5 is NOT a subgraph of G, and

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

 $\sim A(10, 10)$ vertices where A is Ackerman's function. Answer on next slide.

The Size of G

The smallest known graph has

The Size of G

The smallest known graph has

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

18 vertices!

The Size of G

The smallest known graph has

18 vertices!

Known There is no such graph of size ≤ 10 (Lin).

K ロ K K B K K R K R H X B K Y Q Q Q Q

The smallest known graph has

18 vertices!

Known There is no such graph of size ≤ 10 (Lin). Closing that gap is open.

The smallest known graph has

18 vertices!

Known There is no such graph of size ≤ 10 (Lin). Closing that gap is open.

KORKA SERVER ORA

We show the graph G and prove $RAM(G)$.

Detour: Vertex Ramsey Theory

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

K ロ X x 4D X X B X X B X X D X Q Q Q Q Q

Recall For all k there exists n such that

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Recall For all k there exists n such that for all COL : $\binom{[n]}{2}$ $\binom{n}{2} \rightarrow [2]$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Recall For all k there exists n such that for all COL : $\binom{[n]}{2}$ $\binom{n}{2} \rightarrow [2]$

KID KAP KID KID KID DA GA

Recall For all k there exists n such that for all COL : $\binom{[n]}{2}$ $\binom{n}{2} \rightarrow [2]$ there exists homog set size k .

Recall For all k there exists n such that for all COL : $\binom{[n]}{2}$ $\binom{n}{2} \rightarrow [2]$ there exists homog set size k .

We are coloring **edges**.

KORKA SERVER ORA

Recall For all k there exists n such that for all COL : $\binom{[n]}{2}$ $\binom{n}{2} \rightarrow [2]$ there exists homog set size k .

We are coloring **edges**.

We could also look at coloring **vertices**.

Convention If there are k vertices that have the same color and form a clique we call that a **mono** k -clique.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Vertex Ramsey Theory

Convention If there are k vertices that have the same color and form a clique we call that a **mono** k -**clique**. So mono k -clique is our goal rather than mono homog.

KID KAP KID KID KID DA GA
Convention If there are k vertices that have the same color and form a clique we call that a **mono** k -**clique**. So mono k -clique is our goal rather than mono homog.

KORKA SERVER ORA

Is the following true? For all k there exists n such that

Convention If there are k vertices that have the same color and form a clique we call that a **mono** k -**clique**. So **mono** k -**clique** is our goal rather than **mono homog**.

KORKA SERVER ORA

Is the following true? For all k there exists n such that for all colorigs of the vertices of K_n

Convention If there are k vertices that have the same color and form a clique we call that a **mono** k -clique. So **mono** k -**clique** is our goal rather than **mono homog**.

KORKA SERVER ORA

Is the following true? For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Convention If there are k vertices that have the same color and form a clique we call that a **mono** k -clique. So **mono** k -**clique** is our goal rather than **mono homog**.

KORKA SERVER ORA

Is the following true? For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique. **Discuss**

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

KID KAP KID KID KID DA GA

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono *k*-clique. Take $n = 2k - 1$. k of the vertices are the same color. They form a mono k-clique.

KORK ERKER ADAM ADA

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take $n = 2k - 1$. k of the vertices are the same color. They form a mono k-clique.

KO KA KO KE KA E KA SA KA KA KA KA KA A

Note that this is tight: $n = 2k - 2$ does not work (easy).

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take $n = 2k - 1$. k of the vertices are the same color. They form a mono k-clique.

KORKA SERVER ORA

Note that this is tight: $n = 2k - 2$ does not work (easy).

The field seems like a dead end.

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take $n = 2k - 1$. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: $n = 2k - 2$ does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take $n = 2k - 1$. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: $n = 2k - 2$ does not work (easy).

The field seems like a dead end. Nothing to see here, move on. Not so fast!

Thm For all k there exists n such that for all colorigs of the vertices of K_n there exists a mono k-clique.

Take $n = 2k - 1$. k of the vertices are the same color. They form a mono k-clique.

Note that this is tight: $n = 2k - 2$ does not work (easy).

The field seems like a dead end. Nothing to see here, move on. Not so fast! What if we start a graph other than K_n ?

Let $k \in \mathbb{N}$, $k \geq 3$.

Let $k \in \mathbb{N}$, $k > 3$. Want a graph $G = (V, E)$ such that

KORK ERKER ADAM ADA

Let $k \in \mathbb{N}$, $k > 3$. Want a graph $G = (V, E)$ such that \forall COL: $V \rightarrow [2] \exists$ mono k-clique.

Let $k \in \mathbb{N}$, $k > 3$. Want a graph $G = (V, E)$ such that \forall COL: $V \rightarrow [2] \exists$ mono k-clique. G does not contain a clique of size $2k - 1$.

Let $k \in \mathbb{N}$, $k > 3$.

Want a graph $G = (V, E)$ such that \forall COL: $V \rightarrow [2] \exists$ mono k-clique.

G does not contain a clique of size $2k - 1$.

KORKA SERVER ORA

We may put other restrictions on the G

Let $k \in \mathbb{N}$, $k > 3$.

Want a graph $G = (V, E)$ such that \forall COL: $V \rightarrow [2] \exists$ mono k-clique.

G does not contain a clique of size $2k - 1$.

We may put other restrictions on the G

G does not contain a clique of size $2k - 2$. $2k - 3$. How low can you go!

Let $k \in \mathbb{N}$, $k > 3$.

Want a graph $G = (V, E)$ such that \forall COL: $V \rightarrow [2] \exists$ mono k-clique.

G does not contain a clique of size $2k - 1$.

We may put other restrictions on the G

G does not contain a clique of size $2k - 2$. $2k - 3$. How low can you go!

KORKA SERVER ORA

Try to minimize the number of vertices in G.

Let $k \in \mathbb{N}$, $k > 3$.

Want a graph $G = (V, E)$ such that \forall COL: $V \rightarrow [2] \exists$ mono k-clique.

G does not contain a clique of size $2k - 1$.

We may put other restrictions on the G

G does not contain a clique of size $2k - 2$. $2k - 3$. How low can you go!

Try to minimize the number of vertices in G. **Similar** to our study of G where 2-coloring edges yields 3-homog set.

Let $k \in \mathbb{N}$, $k > 3$.

Want a graph $G = (V, E)$ such that

 \forall COL: $V \rightarrow [2] \exists$ mono k-clique.

G does not contain a clique of size $2k - 1$.

We may put other restrictions on the G

G does not contain a clique of size $2k - 2$. $2k - 3$. How low can you go!

Try to minimize the number of vertices in G.

Similar to our study of G where 2-coloring edges yields 3-homog set.

KORKAR KERKER DRA

We will use a result in Vertex-Ramsey to help Graph Ramsey.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KID KARA KE KA E KO SOV

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H.

KID KAP KID KID KID DA GA

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$.

KORK ERKER ADAM ADA

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$.

Use the graph

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$. Use the graph $V = \{0, \ldots, 16\}$ (view as \mathbb{Z}_{17} .

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$. Use the graph $V = \{0, \ldots, 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y \text{ is a square mod } 17\}.$

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$. Use the graph $V = \{0, \ldots, 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y$ is a square mod 17}. **Familiar!** This is the \bf{R} edges of the graph that showed $R(4) \ge 18$. Hence K_4 is not a subgraph.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$. Use the graph $V = \{0, \ldots, 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y$ is a square mod 17}. **Familiar!** This is the \bf{R} edges of the graph that showed $R(4) \ge 18$. Hence K_4 is not a subgraph.

KORKAR KERKER DRA

Need to show that \forall COL: $V \rightarrow [2]$ ∃ mono 3-clique.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and K_4 is not a sugraph of H. $|V| = 17$. Use the graph $V = \{0, \ldots, 16\}$ (view as \mathbb{Z}_{17} . $E = \{(x, y): x - y$ is a square mod 17}. **Familiar!** This is the \bf{R} edges of the graph that showed $R(4) \ge 18$. Hence K_4 is not a subgraph. Need to show that \forall COL: $V \rightarrow [2]$ ∃ mono 3-clique. That will be a HW.

KORKAR KERKER DRA

Back to Graph Ramsey Theory

KORK STRATER STRACK

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KORKA SERVER ORA

 K_5 is not a sugraph of H.

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KORKA SERVER ORA

 K_5 is not a sugraph of H. $|V| = 18.$

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KORKA SERVER ORA

 K_5 is not a sugraph of H.

 $|V| = 18.$

G is H with one more vertex and all edges to it. Formally:

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KORKA SERVER ORA

 K_5 is not a sugraph of H.

 $|V| = 18.$

G is H with one more vertex and all edges to it. Formally:

 $H = (V, E)$. Let $v_0 \notin V$. $G = (V', E')$ where

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KORKA SERVER ORA

 K_5 is not a sugraph of H.

 $|V| = 18.$

G is H with one more vertex and all edges to it. Formally:

 $H = (V, E)$. Let $v_0 \notin V$. $G = (V', E')$ where $V' = V \cup \{v_0\}$
G, $RAM(G)$, No K_5 Subgraph

Informal G is H with one more vertex added and an edge from every vertex in H to the new vertex.

Thm There exists a graph $H = (V, E)$ such that $RAM(G)$ holds and

KORKA SERVER ORA

$$
K_5
$$
 is not a sugaraph of H .

 $|V| = 18.$

G is H with one more vertex and all edges to it. Formally:

$$
H = (V, E). \text{ Let } v_0 \notin V. \ G = (V', E') \text{ where } V' = V \cup \{v_0\} E' = E \cup \{(v, v_0): v \in V'\}
$$

G has No K_5 Subgraph

G does not have K_5 as a subgraph: Assume, BWOC, that G has K_5 as a subgraph.

KORK ERKER ADAM ADA

G does not have K_5 as a subgraph: Assume, BWOC, that G has K_5 as a subgraph.

If the K_5 does not have v_0 then K_5 is a subgraph of H, contradiction.

KORKA SERVER ORA

G does not have K_5 as a subgraph:

Assume, BWOC, that G has K_5 as a subgraph.

If the K_5 does not have v_0 then K_5 is a subgraph of H, contradiction.

If the K_5 does have v_0 then remove v_0 and you have that K_4 is a subgraph of H , contradiciton.

KORKA SERVER ORA

 $RAM(G):$ Let COL: $E' \rightarrow [2]$.

 $RAM(G)$: Let COL: $E' \rightarrow [2]$. We creat a coloring of the vetices of H.

 $RAM(G)$: Let COL: $E' \rightarrow [2]$. We creat a coloring of the vetices of H. $COL^*: V \rightarrow [2]$ is defined by

 $RAM(G)$: Let COL: $E' \rightarrow [2]$. We creat a coloring of the vetices of H. $COL^*: V \rightarrow [2]$ is defined by $COL^*(v) = COL(v, v_0).$

KORK ERRY ABY CHANNING

 $RAM(G)$: Let COL: $E' \rightarrow [2]$.

We creat a coloring of the vetices of H.

$$
COL^*: V \to [2] \text{ is defined by}
$$

$$
COL^*(v) = COL(v, v_0).
$$

By First Interesting Theorem on Vertex-Ramsey have ∃ mono 3-clique.

KID KAP KID KID KID DA GA

 $RAM(G)$: Let COL: $E' \rightarrow [2]$.

We creat a coloring of the vetices of H.

$$
COL^*: V \to [2] \text{ is defined by}
$$

$$
COL^*(v) = COL(v, v_0).
$$

By First Interesting Theorem on Vertex-Ramsey have ∃ mono 3-clique.

KORK ERKER ADAM ADA

See next slide for pictures and grand finale!

Kロトメ倒下 K ミトメミト ニミーのR C

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Hence COL looks like:

イロト イ母 トイミト イミト ニヨー つんぺ

Hence COL looks like:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

If any of $(1, 2)$, $(2, 3)$, $(1, 3)$ are **R** then have **R** \triangle .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

If any of $(1, 2)$, $(2, 3)$, $(1, 3)$ are **R** then have **R** \triangle . If all of $(1, 2)$, $(1, 3)$, $(2, 3)$ are **B** then have **B** \triangle .

KORKA SERVER ORA

If any of $(1, 2)$, $(2, 3)$, $(1, 3)$ are **R** then have **R** \triangle . If all of $(1, 2)$, $(1, 3)$, $(2, 3)$ are **B** then have **B** \triangle .

KORKA SERVER ORA

Done!