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Def Let G = (V ,E ) be a graph. RAM(G , c , k) means that
For all COL : E → [c] there exists a k-homog set.

Convention RAM(G , 2, 3) will be denoted RAM(G ).

We will mostly be studying RAM(G , 2, 3).
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Is there a graph G w/o a K5-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.
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K5 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G
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∼ A(10, 10) vertices where A is Ackerman’s function.
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The Size of G

The smallest known graph has

18 vertices!

Known There is no such graph of size ≤ 10 (Lin).
Closing that gap is open.

We show the graph G and prove RAM(G ).
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We Have Been Studying Edge Ramsey Theory

Recall For all k there exists n such that

for all COL :
([n]
2

)
→ [2]

there exists homog set size k .

We are coloring edges.

We could also look at coloring vertices.
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Vertex Ramsey Theory

Convention If there are k vertices that have the same color and
form a clique we call that a mono k-clique.

So mono k-clique is our goal rather than mono homog.

Is the following true?
For all k there exists n such that
for all colorigs of the vertices of Kn

there exists a mono k-clique.
Discuss
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First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorigs of the
vertices of Kn there exists a mono k-clique.

Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?
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Driving Quetion in Vertex Ramsey Theory

Let k ∈ N, k ≥ 3.

Want a graph G = (V ,E ) such that
∀ COL : V → [2] ∃ mono k-clique.
G does not contain a clique of size 2k − 1.

We may put other restrictions on the G

G does not contain a clique of size 2k − 2. 2k − 3. How low
can you go!

Try to minimize the number of vertices in G .
Similar to our study of G where 2-coloring edges yields 3-homog
set.
We will use a result in Vertex-Ramsey to help Graph Ramsey.
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First Interesting Result in Vertex Ramsey

Thm There exists a graphH = (V ,E ) such that RAM(G ) holds
and

K4 is not a sugraph of H.
|V | = 17.

Use the graph
V = {0, . . . , 16} (view as Z17.
E = {(x , y) : x − y is a square mod 17}}.
Familiar! This is the R edges of the graph that showed
R(4) ≥ 18. Hence K4 is not a subgraph.

Need to show that ∀ COL : V → [2] ∃ mono 3-clique.
That will be a HW.
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G , RAM(G ), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graphH = (V ,E ) such that RAM(G ) holds
and

K5 is not a sugraph of H.
|V | = 18.
G is H with one more vertex and all edges to it. Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}
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G has No K5 Subgraph

G does not have K5 as a subgraph:
Assume, BWOC, that G has K5 as a subgraph.

If the K5 does not have v0 then K5 is a subgraph of H,
contradiction.

If the K5 does have v0 then remove v0 and you have that K4 is
a subgraph of H, contradiciton.
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a subgraph of H, contradiciton.



RAM(G )

RAM(G ):
Let COL : E ′ → [2].

We creat a coloring of the vetices of H.

COL∗ : V → [2] is defined by
COL∗(v) = COL(v , v0).

By First Interesting Theorem on Vertex-Ramsey have ∃ mono
3-clique.

See next slide for pictures and grand finale!
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RAM(G)

COL∗ has 3 R vertics. Hence COL looks like:

1

v0

2 3
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Focus on the Three R Edges

1

v0

2 3

If any of (1, 2), (2, 3), (1, 3) are R then have R4.

If all of (1, 2), (1, 3), (2, 3) are B then have B4.

Done!
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