BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

The Distinct Volumes Problem

David Conlon- Cambridge (Prof) Jacob Fox-MIT (Prof) William Gasarch-U of MD (Prof) David Harris- U of MD (Grad Student) Douglas Ulrich- U of MD (Ugrad Student) Sam Zbarsky- Mont. Blair. (High School Student- now CMU)

1. Infinite Ramsey Thm: For any 2-coloring of the EDGES of K_{ω} there exists an infinite monochromatic K_{ω} .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. Infinite Ramsey Thm: For any 2-coloring of the EDGES of K_{ω} there exists an infinite *monochromatic* K_{ω} .
- 2. Infinite Can Ramsey Thm: For any ω -coloring of the EDGES of K_{ω} there exists an infinite H such that either (1) H homog, (2) H min-homog, (3) H max-homog, (4) H rainbow.

- 1. Infinite Ramsey Thm: For any 2-coloring of the EDGES of K_{ω} there exists an infinite *monochromatic* K_{ω} .
- 2. Infinite Can Ramsey Thm: For any ω -coloring of the EDGES of K_{ω} there exists an infinite H such that either (1) H homog, (2) H min-homog, (3) H max-homog, (4) H rainbow.

3. Darling: Give me an example of an actual coloring.

- 1. Infinite Ramsey Thm: For any 2-coloring of the EDGES of K_{ω} there exists an infinite *monochromatic* K_{ω} .
- 2. Infinite Can Ramsey Thm: For any ω -coloring of the EDGES of K_{ω} there exists an infinite H such that either (1) H homog, (2) H min-homog, (3) H max-homog, (4) H rainbow.

3. Darling: Give me an example of an actual coloring.

Bill thinks of one— next page.

Let p_1, p_2, \ldots be an infinite set of points in \mathbb{R} .

Let p_1, p_2, \ldots be an infinite set of points in \mathbb{R} . Let $COL : {\mathbb{N} \choose 2} \to \mathbb{R}$ be

 $COL(i,j) = |p_i - p_j|$ (Distance Between p_i and p_j).

Let p_1, p_2, \ldots be an infinite set of points in \mathbb{R} . Let $COL : {\mathbb{N} \choose 2} \to \mathbb{R}$ be

 $COL(i,j) = |p_i - p_j|$ (Distance Between p_i and p_j).

Result: For any infinite set of points in the plane there is an infinite subset where all distances are distinct. (Already known by Erdös via diff proof.)

Let p_1, p_2, \ldots be an infinite set of points in \mathbb{R} . Let $COL : {\mathbb{N} \choose 2} \to \mathbb{R}$ be

 $COL(i,j) = |p_i - p_j|$ (Distance Between p_i and p_j).

Result: For any infinite set of points in the plane there is an infinite subset where all distances are distinct. (Already known by Erdös via diff proof.)

Next Step: Finite version: Can use Finite Can Ramsey to prove the following: For every set of *n* points in the plane there is a subset of size $\Omega(\log n)$ where all distances are distinct. (Much better is known.)

- イロト イ団ト イヨト イヨト ヨー のへぐ

1. Dumped Ramsey! Added co-authors! Got new results!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Dumped Ramsey! Added co-authors! Got new results!
- 2. What about Area? If there are *n* points in \mathbb{R}^2 want large subset so that all areas are distinct.

- 1. Dumped Ramsey! Added co-authors! Got new results!
- 2. What about Area? If there are *n* points in \mathbb{R}^2 want large subset so that all areas are distinct.
- 3. More general question: n points in \mathbb{R}^d and looking for all *a*-volumes to be different. (This question seems to be new.)

ション ふゆ アメビア メロア しょうくり

EXAMPLES with **DISTANCES**

The following is an **EXAMPLE** of the kind of theorems we will be talking about. If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/3})$ with all distances between points **DIFF**.

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas **DIFF**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas **DIFF**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

FALSE: Take *n* points on a LINE. All triangle areas are 0.

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas **DIFF**.

FALSE: Take *n* points on a LINE. All triangle areas are 0.

We state theorems in **no three collinear** form to get around this issue.

Def: A (2)-Rainbow Set is a set of points in \mathbb{R}^d where all of the distances are distinct. Also called a **dist-rainbow**.

Def: A (2)-Rainbow Set is a set of points in \mathbb{R}^d where all of the distances are distinct. Also called a **dist-rainbow**. **Def:** A 3-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero areas of triangles are distinct. Also called an **area-rainbow**.

Def: A (2)-Rainbow Set is a set of points in \mathbb{R}^d where all of the distances are distinct. Also called a **dist-rainbow**. **Def:** A 3-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero areas of triangles are distinct. Also called an **area-rainbow**. **Def:** An *a*-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero *a*-volumes are distinct. An *a*-volume is the volume enclosed by *a* points. Also called a **vol-rainbow**.

Def: A (2)-Rainbow Set is a set of points in \mathbb{R}^d where all of the distances are distinct. Also called a **dist-rainbow**. **Def:** A 3-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero areas of triangles are distinct. Also called an **area-rainbow**. **Def:** An *a*-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero *a*-volumes are distinct. An *a*-volume is the volume enclosed by *a* points. Also called a **vol-rainbow**.

Def: Let $X \subseteq \mathbb{R}^d$. A **Maximal Rainbow Set** is a rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being a rainbow set.

Def: A (2)-Rainbow Set is a set of points in \mathbb{R}^d where all of the distances are distinct. Also called a **dist-rainbow**. **Def:** A 3-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero areas of triangles are distinct. Also called an **area-rainbow**. **Def:** An *a*-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero *a*-volumes are distinct. An *a*-volume is the volume enclosed by *a* points. Also called a **vol-rainbow**.

Def: Let $X \subseteq \mathbb{R}^d$. A **Maximal Rainbow Set** is a rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being a rainbow set.

Def: Let $X \subseteq \mathbb{R}^d$. An *a*-Maximal Rainbow Set is a *a*-rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being an *a*-rainbow set.

Lemma If there is a MAP from X to Y that is $\leq c$ -to-1 then $|Y| \geq |X|/c$. We will call this LEMMA.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$. **Proof:** Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or

•
$$(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$$

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or

•
$$(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$$

f maps an element of X - M to reason $x \notin M$.

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

ション ふゆ アメビア メロア しょうくり

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or
• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of X - M to reason $x \notin M$. f: $X - M \to {M \choose 2} \cup M \times {M \choose 2}$

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

ション ふゆ アメビア メロア しょうくり

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or
• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$?

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or
• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT.

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or
• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of
$$X - M$$
 to reason $x \notin M$.
 $f : X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$
What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT.
What is $f^{-1}(x_1, \{x_2, x_3\})$?

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

ション ふゆ アメビア メロア しょうくり

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or
• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of X - M to reason $x \notin M$. $f : X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT. What is $f^{-1}(x_1, \{x_2, x_3\})$? It's ≤ 2 POINTS.

Thm: For all $X \subseteq \mathbb{R}^1$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$$
, or
• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

$$\begin{array}{l} f \text{ maps an element of } X - M \text{ to reason } x \notin M. \\ f: X - M \to \binom{M}{2} \cup M \times \binom{M}{2} \\ \text{What is } f^{-1}(\{x_1, x_2\})? \text{ It's } \leq 1 \text{ POINT.} \\ \text{What is } f^{-1}(x_1, \{x_2, x_3\})? \text{ It's } \leq 2 \text{ POINTS.} \end{array}$$

$$f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$$
 is \leq 2-to-1.

The d = 1 Case- Cont

$f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ is \leq 2-to-1.

The d = 1 Case- Cont

$f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ is \leq 2-to-1. Case 1: $|M| \ge n^{1/3}$ DONE!

(11)

$$\begin{aligned} f: X - M &\to \binom{M}{2} \cup M \times \binom{M}{2} \text{ is } \leq 2\text{-to-1.} \\ \text{Case 1: } |M| &\geq n^{1/3} \text{ DONE!} \\ \text{Case 2: } |M| &\leq n^{1/3}. \text{ So } |X - M| = \Theta(|X|). \text{ By LEMMA} \\ |\binom{M}{2} + M \times \binom{M}{2}| &\geq 0.5|X - M| = \Omega(|X|) = \Omega(n) \\ M &\geq \Omega(n^{1/3}) \end{aligned}$$

(11)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▼ 釣∝⊙

On Circle

Thm: For all $X \subseteq \mathbb{S}^1$ (the circle) of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/3})$. **Proof:** Use **MAXIMAL DIST-RAINBOW SET**. Similar Proof.

Better is known: In 1975 Komlos, Sulyok, Szemeredi showed: **Thm:** For all $X \subseteq \mathbb{S}^1$ or \mathbb{R}^1 of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/2})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Better is known: In 1975 Komlos, Sulyok, Szemeredi showed: **Thm:** For all $X \subseteq \mathbb{S}^1$ or \mathbb{R}^1 of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/2})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

This is optimal in \mathbb{S}^1 and \mathbb{R}^1

Better is known: In 1975 Komlos, Sulyok, Szemeredi showed: **Thm:** For all $X \subseteq \mathbb{S}^1$ or \mathbb{R}^1 of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/2})$.

This is optimal in \mathbb{S}^1 and \mathbb{R}^1 Thm: If $X = \{1, ..., n\}$ then the largest dist-rainbow subset is of size $\leq (1 + o(1))n^{1/2}$.

ション ふゆ アメビア メロア しょうくり

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$. **Proof:** Let *M* be a **MAXIMAL DIST-RAINBOW SET.**

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$. **Proof:** Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$. **Proof:** Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$?

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of X - M to reason $x \notin M$. $f : X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

ション ふぼう メリン メリン しょうくしゃ

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of X - M to reason $x \notin M$. $f : X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE. What is $f^{-1}(x_1, \{x_2, x_3\})$?

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

ション ふゆ アメビア メロア しょうくり

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of X - M to reason $x \notin M$. $f : X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE. What is $f^{-1}(x_1, \{x_2, x_3\})$? Lies on CIRCLE.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

ション ふゆ アメビア メロア しょうくり

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

•
$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

• $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of X - M to reason $x \notin M$. $f : X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$ What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE. What is $f^{-1}(x_1, \{x_2, x_3\})$? Lies on CIRCLE. All INVERSE IMG's lie on LINES or CIRCLES.

$$\begin{split} f: X - M &\to {\binom{M}{2}} \cup M \times {\binom{M}{2}} \\ \text{All INVERSE IMG's lie on LINES or CIRCLES. } \delta \text{ TBD.} \\ \text{Cases 1 and 2 induct into line and circle case.} \\ \textbf{Case 1: } (\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})| \geq n^{\delta}]. \\ &\geq n^{\delta} \text{ points on a line, so rainbow set size } \geq \Omega(n^{\delta/3}). \end{split}$$

ション ふゆ アメビア メロア しょうくり

$$\begin{split} f: X - M &\to {\binom{M}{2}} \cup M \times {\binom{M}{2}} \\ \text{All INVERSE IMG's lie on LINES or CIRCLES. } \delta \text{ TBD.} \\ \text{Cases 1 and 2 induct into line and circle case.} \\ \text{Case 1: } (\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})| \geq n^{\delta}]. \\ \geq n^{\delta} \text{ points on a line, so rainbow set size } \geq \Omega(n^{\delta/3}). \\ \text{Case 2: } (\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, \{x_2, x_3\}\})| \geq n^{\delta}]. \\ \geq n^{\delta} \text{ points on a circle, so rainbow set size } \geq \Omega(n^{\delta/3}). \end{split}$$

ション ふぼう メリン メリン しょうくしゃ

$$\begin{split} f: X - M &\to {\binom{M}{2}} \cup M \times {\binom{M}{2}} \\ \text{All INVERSE IMG's lie on LINES or CIRCLES. } \delta \text{ TBD.} \\ \text{Cases 1 and 2 induct into line and circle case.} \\ \textbf{Case 1: } (\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})| \geq n^{\delta}]. \\ \geq n^{\delta} \text{ points on a line, so rainbow set size } \geq \Omega(n^{\delta/3}). \\ \textbf{Case 2: } (\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, \{x_2, x_3\}\})| \geq n^{\delta}]. \\ \geq n^{\delta} \text{ points on a circle, so rainbow set size } \geq \Omega(n^{\delta/3}). \\ \textbf{Case 3: } |M| \geq n^{1/6} \text{ DONE!} \end{split}$$

ション ふぼう メリン メリン しょうくしゃ

$$\begin{split} f: X - M &\to {\binom{M}{2}} \cup M \times {\binom{M}{2}} \\ \text{All INVERSE IMG's lie on LINES or CIRCLES. } \delta \text{ TBD.} \\ \text{Cases 1 and 2 induct into line and circle case.} \\ \text{Case 1: } (\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})| \geq n^{\delta}]. \\ \geq n^{\delta} \text{ points on a line, so rainbow set size } \geq \Omega(n^{\delta/3}). \\ \text{Case 2: } (\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, \{x_2, x_3\}\})| \geq n^{\delta}]. \\ \geq n^{\delta} \text{ points on a circle, so rainbow set size } \geq \Omega(n^{\delta/3}). \\ \text{Case 3: } |M| \geq n^{1/6} \text{ DONE!} \\ \text{Case 4: Map is } \leq n^{\delta} \text{-to-1 AND } |X - M| = \Theta(|X|). \text{ By LEMMA} \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

 $f: X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$ All INVERSE IMG's lie on LINES or CIRCLES. δ TBD. Cases 1 and 2 induct into line and circle case. **Case 1:** $(\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})) > n^{\delta}].$ $\geq n^{\delta}$ points on a line, so rainbow set size $\geq \Omega(n^{\delta/3})$. **Case 2:** $(\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, \{x_2, x_3\}\})| > n^{\delta}].$ $> n^{\delta}$ points on a circle, so rainbow set size $> \Omega(n^{\delta/3})$. **Case 3:** $|M| > n^{1/6}$ DONE! **Case 4:** Map is $< n^{\delta}$ -to-1 AND $|X - M| = \Theta(|X|)$. By LEMMA $|\binom{M}{2} \cup M \times \binom{M}{2}| > n/n^{\delta} = n^{1-\delta}$

$$|M| \geq n/n^{\circ} = n^{1-\circ}$$

 $|M| \geq \Omega(n^{(1-\delta)/3})$

ション ふゆ アメビア メロア しょうくり

 $f: X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$ All INVERSE IMG's lie on LINES or CIRCLES. δ TBD. Cases 1 and 2 induct into line and circle case. **Case 1:** $(\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})) > n^{\delta}].$ $\geq n^{\delta}$ points on a line, so rainbow set size $\geq \Omega(n^{\delta/3})$. **Case 2:** $(\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, \{x_2, x_3\}\})| > n^{\delta}].$ $> n^{\delta}$ points on a circle, so rainbow set size $> \Omega(n^{\delta/3})$. **Case 3:** $|M| > n^{1/6}$ DONE! **Case 4:** Map is $< n^{\delta}$ -to-1 AND $|X - M| = \Theta(|X|)$. By LEMMA (14)

$$egin{array}{ll} |\binom{M}{2} \cup M imes \binom{M}{2}| &\geq n/n^{\delta} = n^{1-\delta} \ |M| &\geq \Omega(n^{(1-\delta)/3}) \end{array}$$

ション ふゆ アメビア メロア しょうくり

Set $\delta/3 = (1 - \delta)/3$. $\delta = 1/2$. Get $\Omega(n^{1/6})$.

On Sphere

Thm: For all $X \subseteq \mathbb{S}^2$ (surface of sphere) of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$. **Proof:** Use **MAXIMAL DIST-RAINBOW SET**. Similar Proof.

On Sphere

Thm: For all $X \subseteq \mathbb{S}^2$ (surface of sphere) of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/6})$. **Proof:** Use **MAXIMAL DIST-RAINBOW SET**. Similar Proof.

Note: Better is known: Charalambides showed $\Omega(n^{1/3})$.

General d Case

Thm:

For all $X \subseteq \mathbb{R}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$. For all $X \subseteq \mathbb{S}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

General d Case

Thm:

For all $X \subseteq \mathbb{R}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$. For all $X \subseteq \mathbb{S}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$.

Proof: Use **MAXIMAL DIST-RAINBOW SET** and induction. Need result on \mathbb{S}^d and \mathbb{R}^d to get result for \mathbb{S}^{d+1} and \mathbb{R}^{d+1} .

ション ふゆ アメビア メロア しょうくり

General d Case

Thm:

For all $X \subseteq \mathbb{R}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$. For all $X \subseteq \mathbb{S}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$.

Proof: Use **MAXIMAL DIST-RAINBOW SET** and induction. Need result on \mathbb{S}^d and \mathbb{R}^d to get result for \mathbb{S}^{d+1} and \mathbb{R}^{d+1} .

Note: Better is known. In 1995 Thiele showed $\Omega(n^{1/(3d-2)})$. But WE improved that!

ション ふゆ アメビア メロア しょうくり

General *d* Case- Much Better

Thm: For all $d \ge 2$, for all $X \subseteq \mathbb{R}^d$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/(3d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3d-3}})$.

General *d* Case- Much Better

Thm: For all $d \ge 2$, for all $X \subseteq \mathbb{R}^d$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/(3d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3d-3}})$. **Proof:** Use **VARIANT ON MAX DIST-RAINBOW SET**

d	$n^{1/3d}$	$n^{1/(3d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3d-3}}$
1	n ^{1/3}	
2	$n^{1/6}$	$n^{1/3}(\log n)^{-1/3}$
3	$n^{1/9}$	$n^{1/6}(\log n)^0$
4	$n^{1/12}$	$n^{1/9}(\log n)^{1/12}$
5	$n^{1/15}$	$n^{1/12}(\log n)^{1/6}$
6	$n^{1/18}$	$n^{1/15}(\log n)^{1/5}$

ション ふゆ アメビア メロア しょうくり

General *d* Case- Much Better

Thm: For all $d \ge 2$, for all $X \subseteq \mathbb{R}^d$ of size *n* there exists a dist-rainbow subset of size $\Omega(n^{1/(3d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3d-3}})$. **Proof:** Use **VARIANT ON MAX DIST-RAINBOW SET**

ション ふゆ アメビア メロア しょうくり

Can we do better? Best we can hope for is roughly $n^{1/d}$.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$. **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET.**

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$. **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$. **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

ション ふゆ アメビア メロア しょうくり

► $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

•
$$(\exists x_1, x_2, x_3 \in M)$$
[AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

•
$$(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$$

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

$$\blacktriangleright (\exists x_1, x_2, x_3 \in M) [AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$$

•
$$(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

$$\blacktriangleright \ (\exists x_1, x_2, x_3 \in M)[\operatorname{AREA}(x, x_1, x_2) = \operatorname{AREA}(x, x_1, x_3)].$$

•
$$(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$$

ション ふゆ アメビア メロア しょうくり

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

$$\blacktriangleright \ (\exists x_1, x_2, x_3 \in M)[\operatorname{AREA}(x, x_1, x_2) = \operatorname{AREA}(x, x_1, x_3)].$$

•
$$(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$$

ション ふゆ アメビア メロア しょうくり

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

•
$$(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$$

•
$$(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)]$$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? SEE NEXT SLIDE FOR GEOM LEMMA.

Lemma On Area

Lemma: Let L_1 and L_2 be lines in \mathbb{R}^2 .

$$\{p : AREA(L_1, p) = AREA(L_2, p)\}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

is a line.

Lemma: Let L_1 and L_2 be lines in \mathbb{R}^2 .

$$\{p: AREA(L_1, p) = AREA(L_2, p)\}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

is a line.
Sketch: AREA(
$$L_1, p$$
) = AREA(L_2, p) iff
 $|L_1| \times |L_1 - p| = |L_2| \times |L_2 - p|$ iff $\frac{|L_1 - p|}{|L_2 - p|} = \frac{|L_1|}{|L_2|}$. This is a line.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

ション ふゆ アメビア メロア しょうくり

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

ション ふゆ アメリア メリア しょうくしゃ

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M?? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふゆ アメリア メリア しょうくしゃ

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふゆ アメビアメロア しょうくしゃ

► $(\exists x_1, x_2, x_3, x_4, x_5 \in M)$ [AREA $(x, x_1, x_2) =$ AREA (x_3, x_4, x_5)].

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

•
$$(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$$

•
$$(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET.**

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふゆ アメリア メリア しょうくしゃ

► $(\exists x_1, x_2, x_3, x_4, x_5 \in M)$ [AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふゆ アメリア メリア しょうくしゃ

► $(\exists x_1, x_2, x_3, x_4, x_5 \in M)$ [AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$?

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

 $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {\binom{M}{2}} \times {\binom{M}{2}} \cup {\binom{M}{2}} \times {\binom{M}{3}}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

ション ふゆ アメリア メリア しょうくしゃ

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$?

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

- $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- ► $(\exists x_1, x_2, x_3, x_4, x_5 \in M)$ [AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

- $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$?

Thm: For all $X \subseteq \mathbb{R}^2$ of size *n*, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN *M*!? Either

- $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE. $f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$ FINITE-to-1?

Area d = 2 Case- Cont

$$f: X - M \to {\binom{M}{2}} \times {\binom{M}{2}} \cup {\binom{M}{2}} \times {\binom{M}{3}}$$
 is FINITE-to-1.
Case 1: $|M| \ge n^{1/5}$ DONE!

Case 2: $|M| \le n^{1/5}$. Then $|X - M| = \Theta(|X|)$. Since MAP is finite-to-1, by LEMMA

$$|\binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}| \geq \Omega(|X - M|) = \Omega(|X|) = \Omega(n) |M| \geq \Omega(n^{1/5})$$

Volume d = 3

Thm: For all $X \subseteq \mathbb{R}^3$ of size *n*, no four on a plane, there exists Vol-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) Similar. Left for the reader.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- * ロ > * 週 > * 注 > * 注 > ・ 注 - の < @

1. Used MAXIMAL a-RAINBOW SET M.

- イロト イロト イヨト イヨト ヨー のへぐ

- 1. Used MAXIMAL a-RAINBOW SET M.
- 2. Used Map f from $x \in X M$ to the reason x is NOT in M.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Used MAXIMAL a-RAINBOW SET M.
- 2. Used Map f from $x \in X M$ to the reason x is NOT in M.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

3. Looked at **INVERSE IMAGES** of that map.

- 1. Used MAXIMAL a-RAINBOW SET M.
- 2. Used Map f from $x \in X M$ to the reason x is NOT in M.
- 3. Looked at **INVERSE IMAGES** of that map.
- 4. Either:

All INVERSE IMG's are small, so use LEMMA.

OR

Some INVERSE IMG's are large subsets of \mathbb{R}^d or \mathbb{S}^d , so induct.

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD)

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET.**

Thm: For all $X \subseteq \mathbb{R}^3$ of size *n*, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

ション ふゆ アメリア メリア しょうくしゃ

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふぼう メリン メリン しょうくしゃ

Thm: For all $X \subseteq \mathbb{R}^3$ of size *n*, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

► $(\exists x_1, x_2, x_3, x_4, x_5 \in M)$ [AREA $(x, x_1, x_2) =$ AREA (x_3, x_4, x_5)].

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

- ► $(\exists x_1, x_2, x_3, x_4, x_5 \in M)$ [AREA (x, x_1, x_2) = AREA (x_3, x_4, x_5)].
- f maps an element of X M to reason $x \notin M$.

Thm: For all $X \subseteq \mathbb{R}^3$ of size *n*, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

- $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふぼう メリン メリン しょうくしゃ

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. f: $X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$.

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふぼう メリン メリン しょうくしゃ

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}\})$?

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

ション ふぼう メリン メリン しょうくしゃ

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

Thm: For all $X \subseteq \mathbb{R}^3$ of size *n*, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let *M* be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS *x* NOT IN *M*!? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$?

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$?

Area-d = 3 Case

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$? THIS IS HARD!

Area-d = 3 Case

Thm: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^{\delta})$. (δ TBD) **Proof:** Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M? Either

• $(\exists x_1, x_2, x_3 \in M)$ [AREA (x, x_1, x_2) = AREA (x, x_1, x_3)].

• $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$

►
$$(\exists x_1, x_2, x_3, x_4, x_5 \in M)$$
[AREA $(x, x_1, x_2) =$
AREA (x_3, x_4, x_5)].

f maps an element of X - M to reason $x \notin M$. $f: X - M \rightarrow {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is
$$f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$$
? THIS IS HARD!

What is
$$f^{-1}({x_1, x_2}, {x_3, x_4, x_5})$$
? THIS IS HARD!
What to do?

Why is this proof harder? **KEY** statement about prior proof:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Why is this proof harder?

KEY statement about prior proof:

1. If INVERSE IMG's are all finite so M is large.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Why is this proof harder?

KEY statement about prior proof:

- 1. If INVERSE IMG's are all finite so M is large.
- 2. If INVERSE IMG's are subsets of \mathbb{R}^d or \mathbb{S}^d then induct.

Why is this proof harder?

KEY statement about prior proof:

1. If INVERSE IMG's are all finite so *M* is large.

2. If INVERSE IMG's are subsets of \mathbb{R}^d or \mathbb{S}^d then induct.

KEY: We cared about $X \subseteq \mathbb{R}^d$ but had to work with \mathbb{S}^d as well. NOW we will have to work with more complicated objects.

ション ふゆ アメリア メリア しょうくしゃ

What Do Inverse Images Look Like?

$$\{x: AREA(x, x_1, x_2) = AREA(x, x_3, x_4)\} =$$

$$\{x : |DET(x, x_1, x_2)| = |DET(x, x_3, x_4)|\}.$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

What Do Inverse Images Look Like?

$$\{x: AREA(x, x_1, x_2) = AREA(x, x_3, x_4)\} =$$

$$\{x : |DET(x, x_1, x_2)| = |DET(x, x_3, x_4)|\}.$$

Def: (Informally) An Algebraic Variety in \mathbb{R}^d is a set of points in \mathbb{R}^d that satisfy a polynomial equation in *d* variables.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d + 1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

ション ふゆ アメリア メリア しょうくしゃ

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d + 1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$. **Corollary** For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 3-rainbow set (dist. areas) of size $\Omega(n^{1/5d})$.

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 3-rainbow set (dist. areas) of size $\Omega(n^{1/5d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 4-rainbow set (dist. volumes) of size $\Omega(n^{1/7d})$.

Comments on the Proof

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 3-rainbow set (dist. areas) of size $\Omega(n^{1/5d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 4-rainbow set (dist. volumes) of size $\Omega(n^{1/7d})$.

Comments on the Proof

1. Proof uses Algebraic Geometry in Proj Space over \mathbb{C} .

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 3-rainbow set (dist. areas) of size $\Omega(n^{1/5d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 4-rainbow set (dist. volumes) of size $\Omega(n^{1/7d})$.

Comments on the Proof

- 1. Proof uses Algebraic Geometry in Proj Space over $\mathbb{C}.$
- 2. Proof uses Maximal subsets in same way as easier proofs.

Thm Let $2 \le a \le d + 1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists an *a*-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 3-rainbow set (dist. areas) of size $\Omega(n^{1/5d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size *n* there is a 4-rainbow set (dist. volumes) of size $\Omega(n^{1/7d})$.

Comments on the Proof

- 1. Proof uses Algebraic Geometry in Proj Space over $\mathbb{C}.$
- 2. Proof uses Maximal subsets in same way as easier proofs.
- 3. Proof is by induction on d.

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

 Better Particular Results: e.g., want for all X ⊆ ℝ² of size n, there exists a rainbow set of size Ω(n^{1/2}).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- Better Particular Results: e.g., want for all X ⊆ ℝ² of size n, there exists a rainbow set of size Ω(n^{1/2}).
- 2. General Better Results: e.g., want Let $1 \le a \le d + 1$. For all $X \subseteq \mathbb{R}^d$ of size n there exists a rainbow set of size $\Omega(n^{1/ad})$.

ション ふゆ アメリア メリア しょうくしゃ

- Better Particular Results: e.g., want for all X ⊆ ℝ² of size n, there exists a rainbow set of size Ω(n^{1/2}).
- General Better Results: e.g., want Let 1 ≤ a ≤ d + 1. For all X ⊆ ℝ^d of size n there exists a rainbow set of size Ω(n^{1/ad}).

ション ふゆ アメリア メリア しょうくしゃ

3. Get easier proofs of general theorem.

- Better Particular Results: e.g., want for all X ⊆ ℝ² of size n, there exists a rainbow set of size Ω(n^{1/2}).
- 2. General Better Results: e.g., want Let $1 \le a \le d + 1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a rainbow set of size $\Omega(n^{1/ad})$.
- 3. Get easier proofs of general theorem.
- 4. Find any nontrivial limits on what we can do. (Trivial: $n^{1/d}$).

ション ふゆ アメリア メリア しょうくしゃ

- Better Particular Results: e.g., want for all X ⊆ ℝ² of size n, there exists a rainbow set of size Ω(n^{1/2}).
- 2. General Better Results: e.g., want Let $1 \le a \le d + 1$. For all $X \subseteq \mathbb{R}^d$ of size *n* there exists a rainbow set of size $\Omega(n^{1/ad})$.
- 3. Get easier proofs of general theorem.
- 4. Find any nontrivial limits on what we can do. (Trivial: $n^{1/d}$).

ション ふぼう メリン メリン しょうくしゃ

5. Algorithmic aspects.