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Probabilistic Method
Proof of Turan’s

Theorem

Exposition by William Gasarch



The Prob Method

Recall that we showed R(k) ≥ 1
e
√
2
k2k/2

by the following thought experiment.

1) Take a complete graph on n = 1
e
√
2
k2k/2 vertices (round up).

2) ∀{x , y} ∈
([n]
2

)
color {x , y} by flipping a fair coin.

3) Calc the Prob of a k-homog set. Find Prob < 1.

4) Hence a coloring that has no homog set of size k must exist.

Note

1) The proof is nonconstructive. It does not give the coloring. It
just shows that such a coloring exists.

2) This method is very powerful and is used a lot.

3) We will use the Prob Method to Proof Turan’s Theorem.
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Turan’s Theorem

Theorem If G = (V ,E ) is a graph, |V | = n, and |E | = e, then G
has an ind set of size at least

n
2e
n + 1

.

Turan proved this in 1941 with a complicated proof. We proof this

more easily using Probability, but first need a lemma. The proof

we give is due to Ravi Boppana and appears in the Alon-Spencer
book on The Probabilistic Method
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Lemma

Lemma If G = (V ,E ) is a graph. Then∑
v∈V

deg(v) = 2e.

Proof: Try to count the edges by summing the degrees at each
vertex. This counts every edge TWICE.
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Proof of Turan’s Theorem

Theorem If G = (V ,E ) is a graph, |V | = n, and |E | = e, then G
has an ind set of size

≥ n
2e
n + 1

.

Proof: Take the graph and RANDOMLY permute the vertices.

Example:

3 5 1 4 2

The set of vertices that have NO edges coming out on the right
form an Ind Set. Call this set I .
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How Big is I?

How big is I

WRONG QUESTION!
What is the EXPECTED VALUE of the size of I .
(NOTE- we permuted the vertices RANDOMLY)
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What is Prob v ∈ I
Let v ∈ V . What is prob that v ∈ I

u1

u2

v u3

u4

u5

v has degree dv . How many ways can v and its vertices be laid
out: (dv + 1)!. In how many of them is v on the right? dv !.

Pr(v ∈ I ) =
dv !

(dv + 1)!
=

1

dv + 1
.

Hence

E (|I |) =
∑
v∈V

1

dv + 1
.
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How Big is this Sum?

Need to find lower bound on∑
v∈V

1

dv + 1
.



Rephrase

NEW PROBLEM:
Minimize ∑

v∈V

1

xv + 1

relative to the constraint: ∑
v∈V

xv = 2e.

KNOWN: This sum is minimized when all of the xv are 2e
|V | = 2e

n .
So the min the sum can be is∑

v∈V

1
2e
n + 1

=
n

2e
n + 1

.



Recap and Done

E (|I |) =
∑

v∈V
1

dv+1 and
∑

v∈V dv = 2e.

To lower bound E (|I |) we solve a continuous problem: minimize∑
v∈V

1
xv+1 with constraint

∑
v∈V xv = 2e.

The min occurs when (∀v)[xv = 2e
n ]. Hence

E (I ) ≥
∑
v∈V

1

xv + 1
≥
∑
v∈V

1
2e
n + 1

=
n

2e
n + 1
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