BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Application! Restricting Domains To Stop Being Onto

Exposition by William Gasarch

February 6, 2025

(4日) (個) (主) (主) (三) の(の)

The Thin Set Theorem is due to Harvey Friedman.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

The Thin Set Theorem is due to Harvey Friedman.

He was interested in the logical strength of **The Thin Set Theorem**.

・ロト・日本・ヨト・ヨト・日・ つへぐ

The Thin Set Theorem is due to Harvey Friedman.

He was interested in the logical strength of **The Thin Set Theorem**.

(ロト (個) (E) (E) (E) (E) のへの

This will not be our concern.

Def $f: X \to Y$ is **onto** if

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$, f(x) = y.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$, f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then f is not onto.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$, f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then f is not onto.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Example

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$, f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then f is not onto.

ション ふゆ アメビア メロア しょうくしゃ

Example

 $f: \mathbb{Z} \to \mathbb{Z}$ via f(x) = x + 1 is onto

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$, f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then f is not onto.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example

 $f: \mathbb{Z} \to \mathbb{Z}$ via f(x) = x + 1 is onto $f: \mathbb{N} \to \mathbb{Z}$ via f(x) = x + 1 is NOT onto.

Thm $\forall f \in \mathbb{Z}[x, y]$ there exists $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm $\forall f \in \mathbb{Z}[x, y]$ there exists $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

f(x,y) = xg(x,y) + yh(x,y) + c where $g(x,y), h(x,y) \in \mathbb{Z}[x,y]$ and $c \in \mathbb{Z}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Thm $\forall f \in \mathbb{Z}[x, y]$ there exists $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

$$\begin{split} f(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$f(a,b) = ag(a,b) + bh(a,b) + c \equiv 0 + 0 + c \pmod{2}.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Thm $\forall f \in \mathbb{Z}[x, y]$ there exists $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

$$\begin{split} f(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

 $f(a, b) = ag(a, b) + bh(a, b) + c \equiv 0 + 0 + c \pmod{2}.$ If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is always $\equiv 0 \pmod{2}$.

Thm $\forall f \in \mathbb{Z}[x, y]$ there exists $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

$$\begin{split} f(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$f(a,b) = ag(a,b) + bh(a,b) + c \equiv 0 + 0 + c \pmod{2}.$$

If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is always $\equiv 0 \pmod{2}$. If $c \equiv 1 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is always $\equiv 1 \pmod{2}$.

Thm $\forall f \in \mathbb{Z}[x, y]$ there exists $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

$$\begin{split} f(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

 $f(a, b) = ag(a, b) + bh(a, b) + c \equiv 0 + 0 + c \pmod{2}.$ If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is always $\equiv 0 \pmod{2}.$ If $c \equiv 1 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is always $\equiv 1 \pmod{2}.$

In either case $f : \mathbb{D} \times \mathbb{D}$ is NOT onto.

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

$$f(x,y) = \left\lceil (p(x,y))^{1/101} \right\rceil$$
 where $p(x,y) \in \mathbb{Z}[x,y]$

 $f(x,y) = \left[(p(x,y))^{1/101} \right] \text{ where } p(x,y) \in \mathbb{Z}[x,y]$ $p(x,y) = xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y]$ and $c \in \mathbb{Z}$.

$$\begin{split} f(x,y) &= \left\lceil (p(x,y))^{1/101} \right\rceil \text{ where } p(x,y) \in \mathbb{Z}[x,y] \\ p(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \text{ (This still works.)} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$p(a,b) = ag(a,b) + bh(a,by) + c \equiv 0 + 0 + c \pmod{2}.$$

$$\begin{split} f(x,y) &= \left\lceil (p(x,y))^{1/101} \right\rceil \text{ where } p(x,y) \in \mathbb{Z}[x,y] \\ p(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \text{ (This still works.)} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$p(a,b) = ag(a,b) + bh(a,by) + c \equiv 0 + 0 + c \pmod{2}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is of the form $(2k)^{1/101}$.

$$\begin{split} f(x,y) &= \left\lceil (p(x,y))^{1/101} \right\rceil \text{ where } p(x,y) \in \mathbb{Z}[x,y] \\ p(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \text{ (This still works.)} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$p(a,b) = ag(a,b) + bh(a,by) + c \equiv 0 + 0 + c \pmod{2}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is of the form $(2k)^{1/101}$. Can show this is never equal to 1.

$$\begin{split} f(x,y) &= \left\lceil (p(x,y))^{1/101} \right\rceil \text{ where } p(x,y) \in \mathbb{Z}[x,y] \\ p(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \text{ (This still works.)} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$p(a,b) = ag(a,b) + bh(a,by) + c \equiv 0 + 0 + c \pmod{2}.$$

ション ふゆ アメビア メロア しょうくしゃ

If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is of the form $(2k)^{1/101}$. Can show this is **never equal to 1**. If $c \equiv 1 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is of the form $(2k+1)^{1/101}$.

$$\begin{split} f(x,y) &= \left\lceil (p(x,y))^{1/101} \right\rceil \text{ where } p(x,y) \in \mathbb{Z}[x,y] \\ p(x,y) &= xg(x,y) + yh(x,y) + c \text{ where } g(x,y), h(x,y) \in \mathbb{Z}[x,y] \\ \text{and } c \in \mathbb{Z}. \\ \text{Let } \mathbb{D} &= \{x \colon x \equiv 0 \pmod{2}\} \text{ (This still works.)} \\ \text{If } a, b \in \mathbb{D} \text{ then} \end{split}$$

$$p(a,b) = ag(a,b) + bh(a,by) + c \equiv 0 + 0 + c \pmod{2}.$$

If $c \equiv 0 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is of the form $(2k)^{1/101}$. Can show this is **never equal to 1**. If $c \equiv 1 \pmod{2}$ then $f : \mathbb{D} \times \mathbb{D}$ is of the form $(2k+1)^{1/101}$. Can show this is **never equal to 0**.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()・

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Question For which $f: \mathbb{Z} \to \mathbb{Z}$ is there a set $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \to \mathbb{Z}$ is not onto?

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Question For which $f : \mathbb{Z} \to \mathbb{Z}$ is there a set $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \to \mathbb{Z}$ is not onto? **Stupid Question** Just take $A = \emptyset$ or a finite set.

ション ふゆ アメビア メロア しょうくしゃ

Question For which $f: \mathbb{Z} \to \mathbb{Z}$ is there a set $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \to \mathbb{Z}$ is not onto? **Stupid Question** Just take $A = \emptyset$ or a finite set. **Good Question** For which $f: \mathbb{Z} \to \mathbb{Z}$ is there an ∞ set $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \to \mathbb{Z}$ is not onto?

$\textbf{Domain} \ \mathbb{Z}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ▶ ▲◎

Thm $\forall f : \mathbb{Z} \to \mathbb{Z} \exists$ an ∞ set $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Domain \mathbb{Z}

Thm $\forall f : \mathbb{Z} \to \mathbb{Z} \exists$ an ∞ set $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \to \mathbb{Z}$ is not onto. If f is not onto then take $\mathbb{D} = \mathbb{Z}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Domain \mathbb{Z}

Thm $\forall f : \mathbb{Z} \to \mathbb{Z} \exists$ an ∞ set $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \to \mathbb{Z}$ is not onto. If f is not onto then take $\mathbb{D} = \mathbb{Z}$. If f is onto then take $\mathbb{D} = \mathbb{Z} - f^{-1}(0)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Domain \mathbb{Z}

Thm $\forall f: \mathbb{Z} \to \mathbb{Z} \exists an \infty \text{ set } \mathbb{D} \subseteq \mathbb{Z}, f: \mathbb{D} \to \mathbb{Z} \text{ is not onto.}$ If f is not onto then take $\mathbb{D} = \mathbb{Z}$. If f is onto then take $\mathbb{D} = \mathbb{Z} - f^{-1}(0)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

That wasn't stupid, but it was easy.
Look at $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Look at $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto. **Vote** Which of the following is true?

Look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. **Vote** Which of the following is true? (1) $\forall f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. **Vote** Which of the following is true? (1) $\forall f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. (2) $\exists f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \forall$ infinite $\mathbb{D} \subseteq \mathbb{Z}$ $f: \mathbb{D} \times \mathbb{D}$ is onto.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. **Vote** Which of the following is true? (1) $\forall f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. (2) $\exists f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \forall$ infinite $\mathbb{D} \subseteq \mathbb{Z} f: \mathbb{D} \times \mathbb{D}$ is onto. (3) The question is independent of PA.

Look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. **Vote** Which of the following is true? (1) $\forall f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f: \mathbb{D} \times \mathbb{D}$ is not onto. (2) $\exists f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \forall$ infinite $\mathbb{D} \subseteq \mathbb{Z} f: \mathbb{D} \times \mathbb{D}$ is onto. (3) The question is independent of PA.

Answer on next page.

Can Always Find $\mathbb D$

Can Always Find $\mathbb D$

Thm $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Can Always Find $\mathbb D$

Thm $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto. Given f, we will use Ramsey's Theorem 3 times.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Can Always Find \mathbb{D}

Thm $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto. Given f, we will use Ramsey's Theorem 3 times. Why 3? We will discuss that later.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- * ロ > * 週 > * 注 > * 注 > ・ 注 - の < @

Define $\mathrm{COL}_1\colon\mathbb{Z}\to[4]$ via


```
Define \operatorname{COL}_1 \colon \mathbb{Z} \to [4] via\operatorname{COL}_1(x) = \left\{
```

Define
$$\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$$
 via
 $\operatorname{COL}_1(x) = \begin{cases} 0 \text{ if } f(x, x) = 0 \\ \end{cases}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$COL_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1 \end{cases}$$

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$COL_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2 \end{cases}$$

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Let H_1 be the infinite homog set.

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Let H_1 be the infinite homog set. If $\text{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x, x) = 0]$.

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

ł

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Let H_1 be the infinite homog set. If $\text{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x, x) = 0]$. If $\text{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x, x) = 1]$.

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

Let H_1 be the infinite homog set. If $\operatorname{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x, x) = 0]$. If $\operatorname{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x, x) = 1]$. If $\operatorname{COL}_1(H_1) = 2$ then $(\forall x \in H_1)[f(x, x) = 2]$.

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

ション ふぼう メリン メリン しょうくしゃ

Let H_1 be the infinite homog set. If $\operatorname{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x, x) = 0]$. If $\operatorname{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x, x) = 1]$. If $\operatorname{COL}_1(H_1) = 2$ then $(\forall x \in H_1)[f(x, x) = 2]$. If $\operatorname{COL}_1(H_1) = \mathbb{R}$ then $(\forall x \in H_1)[f(x, x) \notin \{0, 1, 2\}]$.

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

Let H_1 be the infinite homog set. If $\operatorname{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x, x) = 0]$. If $\operatorname{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x, x) = 1]$. If $\operatorname{COL}_1(H_1) = 2$ then $(\forall x \in H_1)[f(x, x) = 2]$. If $\operatorname{COL}_1(H_1) = \mathbb{R}$ then $(\forall x \in H_1)[f(x, x) \notin \{0, 1, 2\}]$. Not done- that's just f(x, x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Define $\operatorname{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$\operatorname{COL}_{1}(x) = \begin{cases} 0 \text{ if } f(x, x) = 0\\ 1 \text{ if } f(x, x) = 1\\ 2 \text{ if } f(x, x) = 2\\ \mathbf{R} \text{ if } f(x, x) \notin \{0, 1, 2\} \end{cases}$$

Let H_1 be the infinite homog set. If $\operatorname{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x, x) = 0]$. If $\operatorname{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x, x) = 1]$. If $\operatorname{COL}_1(H_1) = 2$ then $(\forall x \in H_1)[f(x, x) = 2]$. If $\operatorname{COL}_1(H_1) = \mathbb{R}$ then $(\forall x \in H_1)[f(x, x) \notin \{0, 1, 2\}]$. Not done- that's just f(x, x). Will now look at f restricted to $(x, y) \in H_1 \times H_1$ with x < y.

Define $\operatorname{COL}_2 \colon {\binom{H_1}{2}} \to [4]$

Define $\operatorname{COL}_2 \colon {\binom{H_1}{2}} \to [4]$ Recall that the coloring is on **unordered pairs**

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

1

$$\operatorname{COL}_2(x,y) = \begin{cases} \\ \\ \end{cases}$$

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_2(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0 \\ \end{cases}$$

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$COL_{2}(x, y) = \begin{cases} 0 \text{ if } f(x, y) = 0\\ 1 \text{ if } f(x, y) = 1 \end{cases}$$

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x, y) = \begin{cases} 0 \text{ if } f(x, y) = 0\\ 1 \text{ if } f(x, y) = 1\\ 2 \text{ if } f(x, y) = 2 \end{cases}$$

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Let $H_2 \subseteq H_1$ be the infinite homog set.

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

ション ふゆ アメビア メロア しょうくしゃ

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\text{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$.

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\operatorname{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$.
Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\operatorname{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\operatorname{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$.

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\operatorname{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\operatorname{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$. If $\operatorname{COL}_2(H_2) = \mathbb{R}$ then $(\forall x, y \in H_1, x < y)[f(x, y) \notin \{0, 1, 2\}]$.

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\operatorname{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\operatorname{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$. If $\operatorname{COL}_2(H_2) = \mathbb{R}$ then $(\forall x, y \in H_1, x < y)[f(x, y) \notin \{0, 1, 2\}]$. Not done yet. On H_2 we control f(x, x), f(x, y) with x < y.

Define $\text{COL}_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x, y\}$ and we can assume x < y.

$$\operatorname{COL}_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\operatorname{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\operatorname{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$. If $\operatorname{COL}_2(H_2) = \mathbb{R}$ then $(\forall x, y \in H_1, x < y)[f(x, y) \notin \{0, 1, 2\}]$. Not done yet. On H_2 we control f(x, x), f(x, y) with x < y. Now look at f restricted to $(x, y) \in H_1 \times H_1$ with x > y.

Define $\operatorname{COL}_3 \colon \binom{H_2}{2} \to [4]$

Define $\operatorname{COL}_3 \colon \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs**

・ロト・日本・モト・モト・モー うへぐ

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_3(x,y) = \begin{cases} \end{cases}$$

Define $\operatorname{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_3(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0 \\ \end{cases}$$

Define $\operatorname{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$COL_{3}(x, y) = \begin{cases} 0 \text{ if } f(x, y) = 0\\ 1 \text{ if } f(x, y) = 1 \end{cases}$$

Define $\operatorname{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x, y) = \begin{cases} 0 \text{ if } f(x, y) = 0\\ 1 \text{ if } f(x, y) = 1\\ 2 \text{ if } f(x, y) = 2 \end{cases}$$

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathsf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

ション ふゆ アメリア メリア しょうくしゃ

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set.

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

ション ふゆ アメリア メリア しょうくしゃ

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $COL_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$.

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\operatorname{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$.

Define $\text{COL}_3: \binom{H_2}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\operatorname{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$. If $\operatorname{COL}_3(H_3) = 2$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 2]$.

Define $\text{COL}_3: \binom{H_2}{2} \rightarrow [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\operatorname{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$. If $\operatorname{COL}_3(H_3) = 2$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 2]$. If $\operatorname{COL}_3(H_3) = \mathbb{R}$ then $(\forall x, y \in H_1, x > y)[f(x, y) \notin \{0, 1, 2\}]$.

Define $\text{COL}_3: \binom{H_2}{2} \rightarrow [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x, y\}$ and we can assume x > y.

$$\operatorname{COL}_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
(2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\operatorname{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\operatorname{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$. If $\operatorname{COL}_3(H_3) = 2$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 2]$. If $\operatorname{COL}_3(H_3) = \mathbb{R}$ then $(\forall x, y \in H_1, x > y)[f(x, y) \notin \{0, 1, 2\}]$. We show that f on $H_3 \times H_3$ is not onto.

All pairs are from $H_3 \times H_3$.

All pairs are from $H_3 \times H_3$. f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one?

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one?

if color 0 then 0 not in the image, so NOT onto.

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one? if color 0 then 0 not in the image, so NOT onto. if color 1 then 1 not in the image, so NOT onto.

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one? if color 0 then 0 not in the image, so NOT onto. if color 1 then 1 not in the image, so NOT onto. if color 2 then 2 not in the image, so NOT onto.

All pairs are from $H_3 \times H_3$.

f(x, x) is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$. f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one? if color 0 then 0 not in the image, so NOT onto. if color 1 then 1 not in the image, so NOT onto. if color 2 then 2 not in the image, so NOT onto. if color **R** then image is subset of $\{0, 1, 2\}$, so NOT onto.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Why four colors?

Why four colors?

f can have three kinds of input:

Why four colors?

f can have three kinds of input: (x, y) where x = y.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

Why four colors?

f can have three kinds of input: (x, y) where x = y. (x, y) where x < y.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Why four colors?

f can have three kinds of input: (x, y) where x = y. (x, y) where x < y. (x, y) where x > y.

Why four colors?

f can have three kinds of input: (x, y) where x = y. (x, y) where x < y. (x, y) where x > y.

4 is 1 more than the number possible types of inputs.
f Why [4]?

Why four colors?

f can have three kinds of input: (x, y) where x = y. (x, y) where x < y. (x, y) where x > y.

4 is 1 more than the number possible types of inputs. We will discuss this more after we do the Thin Set Theorem for f(x, y, z).

ション ふゆ アメリア メリア しょうくしゃ