Roth's Theorem A Dense Enough Set Has a 3-AP

Exposition by William Gasarch and Kelin Zhu

December 20, 2024

KOKK@KKEKKEK E 1990

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$.

KID KAR KE KE KE YA GA

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds:

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP.

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do:

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do: 1) Some easy cases, and

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do: 1) Some easy cases, and

2) The $k = 3$ case which involves the Discrete Fourier Transform.

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67. Then A contains a 3-AP.

KID KIN KE KAEK LE I DAG

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67. Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

$$
\{1,2,3\},\{4,5,6\},\ldots,\{N-2,N-1,N\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP.

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \le 2$. Then

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \le 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \le 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$ This contradicts A having density > 0.67 .

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \le 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$ This contradicts A having density > 0.67 . So $N(0.67, 3) = 3$.

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \le 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$ This contradicts A having density > 0.67 . So $N(0.67, 3) = 3$. There may be a HW where you are asked to derive bounds on

KORKAR KERKER SAGA

other $N(\delta, k)$.

K ロ X x 4D X X B X X B X X D X O Q O

KID KIN KE KAEK LE I DAG

4) 1974: Szemerédi proves ET-conj for $k = 4$.

KORK ERKER ADAM ADA

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

4) 1974: Szemerédi proves ET-conj for $k = 4$.

Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

4) 1974: Szemerédi proves ET-conj for $k = 4$.

Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

KORKA SERVER ORA

5) 1975: Szemerédi proves ET-conj.

4) 1974: Szemerédi proves ET-conj for $k = 4$.

Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

KORKA SERVER ORA

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

4) 1974: Szemerédi proves ET-conj for $k = 4$.

Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$.

4) 1974: Szemerédi proves ET-conj for $k = 4$.

Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$.

KORKAR KERKER DRA

The ET-Conj is now called Szemerédi's Theorem.

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$. The ET-Conj is now called Szemerédi's Theorem.

KORKAR KERKER DRA

6) 1977: Furstenberg proves ET-conj using Ergodic methods.

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$. The ET-Conj is now called Szemerédi's Theorem.

KORKAR KERKER DRA

6) 1977: Furstenberg proves ET-conj using Ergodic methods. Proof does not gives bounds on $W(k, c)$.

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$. The ET-Conj is now called Szemerédi's Theorem.

6) 1977: Furstenberg proves ET-conj using Ergodic methods. Proof does not gives bounds on $W(k, c)$.

Proof theorists extract bounds from proof which are worse than VDW's bounds.

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$. The ET-Conj is now called Szemerédi's Theorem.

6) 1977: Furstenberg proves ET-conj using Ergodic methods. Proof does not gives bounds on $W(k, c)$.

Proof theorists extract bounds from proof which are worse than VDW's bounds.

7) 1988: Shelah new proof of VDW which gives prim rec bounds.

KID K 4 D X R B X R B X D A Q Q

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$. The ET-Conj is now called Szemerédi's Theorem.

6) 1977: Furstenberg proves ET-conj using Ergodic methods. Proof does not gives bounds on $W(k, c)$.

Proof theorists extract bounds from proof which are worse than VDW's bounds.

7) 1988: Shelah new proof of VDW which gives prim rec bounds. Proof is elementary and does not use any of the ET stuff.

4) 1974: Szemerédi proves ET-conj for $k = 4$. Proof is combinatorial but difficult.

Uses VDW theorem so does not give better bounds on $W(4, c)$.

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW's theorem so does not give better bounds on $W(k, c)$. The ET-Conj is now called Szemerédi's Theorem.

6) 1977: Furstenberg proves ET-conj using Ergodic methods. Proof does not gives bounds on $W(k, c)$.

Proof theorists extract bounds from proof which are worse than VDW's bounds.

7) 1988: Shelah new proof of VDW which gives prim rec bounds. Proof is elementary and does not use any of the ET stuff. He proved Hales-Jewitt Thm which implies [VD](#page-30-0)W's Thm

K ロ X x 4D X X B X X B X X D X O Q O

8) 2001: Gowers proves Szemerédi's Thm a new way using combinatorics and Fourier Analysis to obtain the following:

KID KAP KID KID KID DA GA

8) 2001: Gowers proves Szemerédi's Thm a new way using combinatorics and Fourier Analysis to obtain the following:

$$
W(k,c) \leq 2^{2^{c^{2^{2^{k+9}}}}}
$$

.

KID KAP KID KID KID DA GA