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The Erdös-Turan Conjecture

Def Let N ∈ N. Let A ⊆ [N]. The density of A is |A|/N.

Szemerédi’s Thm For all δ > 0, for all k , there exists
N = N(δ, k) such that the following holds:

If A ⊆ [N] and A has density ≥ δ then A has a k-AP.

We won’t do the (hard) proof. We will do:

1) Some easy cases, and

2) The k = 3 case which involves the Discrete Fourier Transform.
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An Easy Case

Thm Let N ≥ 3. Let A ⊆ [N] of density ≥ 0.67. Then A contains
a 3-AP.

We can assume N ≡ 0 (mod 3).
Look at

{1, 2, 3}, {4, 5, 6}, . . . , {N − 2,N − 1,N}.

Case 1 ∃x ≡ 1 (mod 3), {x , x + 1, x + 2} ∈ A. A has a 3-AP.

Case 2 ∀x ≡ 1 (mod 3), |{x , x + 1, x + 2} ∩ A| ≤ 2. Then

|A| ≤ 2× N
3 ≤ 0.667N < 0.67N

This contradicts A having density ≥ 0.67.

So N(0.67, 3) = 3.

There may be a HW where you are asked to derive bounds on
other N(δ, k).
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Upper Bounds on VDW Numbers: 1974-1988

4) 1974: Szemerédi proves ET-conj for k = 4.
Proof is combinatorial but difficult.
Uses VDW theorem so does not give better bounds on W (4, c).

5) 1975: Szemerédi proves ET-conj.

Proof is combinatorial but difficult.

Uses VDW’s theorem so does not give better bounds on W (k , c).

The ET-Conj is now called Szemerédi’s Theorem.

6) 1977: Furstenberg proves ET-conj using Ergodic methods.

Proof does not gives bounds on W (k , c).

Proof theorists extract bounds from proof which are worse than
VDW’s bounds.

7) 1988: Shelah new proof of VDW which gives prim rec bounds.

Proof is elementary and does not use any of the ET stuff.

He proved Hales-Jewitt Thm which implies VDW’s Thm.
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4) 1974: Szemerédi proves ET-conj for k = 4.

Proof is combinatorial but difficult.
Uses VDW theorem so does not give better bounds on W (4, c).
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6) 1977: Furstenberg proves ET-conj using Ergodic methods.

Proof does not gives bounds on W (k , c).

Proof theorists extract bounds from proof which are worse than
VDW’s bounds.

7) 1988: Shelah new proof of VDW which gives prim rec bounds.

Proof is elementary and does not use any of the ET stuff.

He proved Hales-Jewitt Thm which implies VDW’s Thm.



Upper Bounds on VDW Numbers: 1974-1988
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4) 1974: Szemerédi proves ET-conj for k = 4.
Proof is combinatorial but difficult.
Uses VDW theorem so does not give better bounds on W (4, c).
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Upper Bounds on VDW Numbers: 1974-1988

8) 2001: Gowers proves Szemerédi’s Thm a new way using
combinatorics and Fourier Analysis to obtain the following:

W (k , c) ≤ 22
c2

2k+9

.
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