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Background

Theorem (VDW)
For all positive integers r and k, there exists positive integer N such
that any r-coloring of [N] = {0, . . . ,N − 1} contains a monochromatic
k-AP.

Can we go further?

Conjecture (Erdos-Turan)
[<.->] Let rk (N) be the size of the largest subset of [N] containing no
k-AP. Then, for all positive integers r ,

rk (N) ∈ o(N)
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Conjecture (Erdos-Turan)
[<.->] Let rk (N) be the size of the largest subset of [N] containing no
k-AP. Then, for all positive integers r ,

rk (N) ∈ o(N)

ET would imply a mono k -AP of each color in VDW.
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k = 3: resolved by Roth with Fourier Transform, 1953

General case: resolved by Szemeredi in 1975 using
Combinatorics

We focus on (a variant of) Roth’s proof, known as Roth’s Theorem.

Today: new upper bounds on rk (N) established in 2024 using
high-powered analysis
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Discrete Fourier Transform

Definition (DFT)

Let ZN denote the integers modulo N. Also let χ(z) = e
−2πiz

N . Then, the
DFT of a function f : ZN → C, denoted as f̂ , is defined as:

f̂ (m) =
N−1∑
x=0

f (x)χ(−mx)
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−2πiz

N . Then, the
DFT of a function f : ZN → C, denoted as f̂ , is defined as:

f̂ (m) =
N−1∑
x=0

f (x)χ(−mx)

We will work in ZN . Although not all ZN APs are Z APs, we will place
restrictions on the ZN AP we find so that it is also a Z AP.
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Theorem (Plancherel)∑
x∈ZN

|f (x)|2 =
1
N

∑
m∈ZN

|̂f (m)|2

Theorem (Convolution (unconventional))
Define

(f ∗ g)(x) =
∑

y∈ZN

f (y)g(x − y)

Then for any m,
(̂f ∗ g)(m) = f̂ (m)ĝ(m)
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Motivation for Solution

Suppose that we choose a subset A of [N] with fixed density δ > 0. Let
A(x) be the indicator function.

Suppose A is randomly and uniformly chosen in [N] - the expected
number of 3AP is cN2

δ3 which is large when N is large.

A small fourier coefficient |Â(m)| suggests that mA is uniformly
distributed in ZN .

Figure: Two fourier coefficients of the quadratic residues mod 199 - an
example of a set with small fourier coefficients
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If all (nonzero) fourier coefficients are sufficiently small,
A,2A,3A . . . are all uniformly distributed, so A is "random enough"
to guarantee at least one 3AP

If some fourier coefficient |Â(m)| is large, then mA is biased
towards some point when wrapped around the unit circle

Figure: Example of a large fourier coefficient
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If some fourier coefficient |Â(m)| is large, then mA is biased
towards some point when wrapped around the unit circle

Figure: Example of a large fourier coefficient

Dr. William Gasarch, Kelin Zhu Fourier Transform and Roth’s Theorem University of Maryland 8 / 1



If all (nonzero) fourier coefficients are sufficiently small,
A,2A,3A . . . are all uniformly distributed, so A is "random enough"
to guarantee at least one 3AP
If some fourier coefficient |Â(m)| is large, then mA is biased
towards some point when wrapped around the unit circle

Figure: Example of a large fourier coefficient

Dr. William Gasarch, Kelin Zhu Fourier Transform and Roth’s Theorem University of Maryland 8 / 1



Hence, we can center an AP of "length" cN at the "occupied arc" so
that it has a high density intersection with mA. We will prove that we
can choose the common difference so that the AP consists of enough
terms and doesn’t "roll over" (isn’t split into multiple Z APs) when we
undo multiplication by m.

A has higher density in our AP then in [N], we can replace [N] with our
AP and reiterate to find another AP in our AP and increase the density
of A in our universe again. . .

If N is large enough that we can repeat this process infinitely, A will
have infinite density in some AP, impossible.
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Initial Setup

We assume that N is odd so that 2 is invertible in ZN . If N is even, we
may replace N with N + 1 leading to a negligible change in density.

Let B = A ∩ [N
3 ,

2N
3 ). Note that if x , y , z is a 3-AP in ZN such that

x + z ≡ 2y (mod N), with x , y ∈ B and z ∈ A, then it is also a 3-AP in
N. Let Q be the number of 3-APs in A where x , y ∈ B. Then,

Q =
∑

x ,y ,z,x+y≡2z

B(x)B(y)A(z)

=
1
N

∑
x ,y ,z,m

B(x)B(y)A(z)χ(−m(x + z − 2y))

=
1
N

∑
m

B̂(m)B̂(−2m)Â(m)

At this point, we split the sum into
1
N |B|

2|A|+
∑

m 6=0 B̂(m)B̂(−2m)Â(m). The term
1
N
∑

m 6=0 B̂(m)B̂(−2m)Â(m) will be denoted by the "error term" E .
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Small Fourier Coefficients

Apply Cauchy-Schwartz and Plancherel:

|E | ≤ 1
N

max
m 6=0
|Â(m)|

∣∣∣∣∣∣
∑
m 6=0

B̂(m)B̂(−2m)

∣∣∣∣∣∣
≤ 1

N
max
m 6=0
|Â(m)|

∑
m

|B̂(m)B̂(−2m)|

≤ 1
N

max
m 6=0
|Â(m)|

(∑
m

|B̂(m)|2
) 1

2
(∑

m

|B̂(−2m)|2
) 1

2

= max
m 6=0
|Â(m)|

(∑
m

|B(m)|2
) 1

2
(∑

m

|B(−2m)|2
) 1

2

= max
m 6=0
|Â(m)||B|
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If |B| is small, then one of [0, N
3 ) and [2N

3 ,N) will have large intersection
with A. We can then use the "density increase" argument on the next
slides.

If we suppose that maxm 6=0 |Â(m)| ≤ δ2

10N and |B| ≥ |A|5 . we obtain that
|E | ≤ 1

2N |B|
2|A|, and consequentially

Q =
1
N
|B|2|A|+ E ≥ 1

N
|B|2|A| − |E | ≥ δ3

50
N2

Hence, there are at least δ3

50N2 − δN 3-APs in A (accounting for the
overcounted x = y = z), which is positive as long as N > 50

δ2 .
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Large Fourier Coefficients

Suppose |B| < |A|
5 , then if we assume WLOG that

|A ∩ [0, N
3 )| ≥ A ∩ [2N

3 ,N)|, we have |A∩[0,
N
3 )|

|[0,N
3 )|
≥ δ + δ

5 .

Now, suppose maxm 6=0 |Â(m)| > δ2

10N. Let the maximum-attaining value
of m be r . Pigeonhole: there exist 0 ≤ p < q ≤

√
N such that

p − q ≤
√

N and r(p − q) ≤
√

N (mod N).

Let d = p − q. Then, consider the AP between −
⌊√

N
6

⌋
d and

⌊√
N

6

⌋
d

with common difference d ; let the set of its members be P.
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|P̂(r)| =

∣∣∣∣∣∑
x∈P

χ(−rx)

∣∣∣∣∣
≥ Re

(∑
x∈P

χ(−rx)

)

≥ |P|
2

Because | − rx | ≤ N
6 , so Re(e

−2πirx
N ) ≥ Re(e

∓2πi
6 ) = 1

2 .

Let f (x) = A(x)− δ, and g(x) = f ∗ P(x). Note that f̂ (r) = Â(r), and∑
m

|g(m)| ≥ |ĝ(r)| = |̂f (r)||P̂(r)| ≥ δ2

20
N|P|

Since f has mean value zero, g also does (expand the sum), so

max g(m) ≥
∑

m,g(m)≥0 g(m)

N
=

∑
m |g(m)|

2N
=
δ2

40
|P|
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Let the maximum-attaining m be x . By definition,

δ2

40
|P| ≤

∑
y

f (y)P(x − y)

=
∑

y

A(y)P(x − y)−
∑

y

δP(x − y)

= |A ∩ (x − P)| − δ|x − P|

We’ve shown that the density of A in x − P is at least δ + δ2

40 . Also, note
that the "difference" between the first and last terms of P, and
therefore also of x − P, is 2

⌊√
N

6

⌋
d < N, so x − P "rolls over" from

n − 1 to 0 at most once in Z.

We can write x − P = P1 ∪ P2 where P1,P2 are APs in N. Easy to
show that one of them (P ′) has size at least δ2

80 |P| and satisfies

|A ∩ P ′| ≥
(
δ + δ2

80

)
|P ′|

Dr. William Gasarch, Kelin Zhu Fourier Transform and Roth’s Theorem University of Maryland 15 / 1



Let the maximum-attaining m be x . By definition,

δ2

40
|P| ≤

∑
y

f (y)P(x − y)

=
∑

y

A(y)P(x − y)−
∑

y

δP(x − y)

= |A ∩ (x − P)| − δ|x − P|

We’ve shown that the density of A in x − P is at least δ + δ2

40 . Also, note
that the "difference" between the first and last terms of P, and
therefore also of x − P, is 2

⌊√
N

6

⌋
d < N, so x − P "rolls over" from

n − 1 to 0 at most once in Z.

We can write x − P = P1 ∪ P2 where P1,P2 are APs in N. Easy to
show that one of them (P ′) has size at least δ2

80 |P| and satisfies

|A ∩ P ′| ≥
(
δ + δ2

80

)
|P ′|

Dr. William Gasarch, Kelin Zhu Fourier Transform and Roth’s Theorem University of Maryland 15 / 1



Let the maximum-attaining m be x . By definition,

δ2

40
|P| ≤

∑
y

f (y)P(x − y)

=
∑

y

A(y)P(x − y)−
∑

y

δP(x − y)

= |A ∩ (x − P)| − δ|x − P|

We’ve shown that the density of A in x − P is at least δ + δ2

40 . Also, note
that the "difference" between the first and last terms of P, and
therefore also of x − P, is 2

⌊√
N

6

⌋
d < N, so x − P "rolls over" from

n − 1 to 0 at most once in Z.

We can write x − P = P1 ∪ P2 where P1,P2 are APs in N. Easy to
show that one of them (P ′) has size at least δ2

80 |P| and satisfies

|A ∩ P ′| ≥
(
δ + δ2

80

)
|P ′|

Dr. William Gasarch, Kelin Zhu Fourier Transform and Roth’s Theorem University of Maryland 15 / 1



Finish

We’ve shown:

Proposition

As long as N > 50
δ2 , we can either find a 3-AP in A (?) or find an AP P ′

such that |P ′| = Ω(
√

N) and |A ∩ P ′| ≥
(
δ + δ2

80

)
|P ′|

We can replace [N] with P ′ and reiterate - if N is large enough and we
never reach ?, we get some AP P ′′′′′′′ such that A has density > 1 in
P ′′′′′′′, which is impossible.

Handout - N = exp(exp(cδ−1)) suffices.
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