When Does a 2-Coloring Yield a Mono Unit Square?

Exposition by William Gasarch

November 20, 2024

KORKA SERVER ORA

The main theorem of these slides is due to **Stefan Burr.**

The main theorem of these slides is due to **Stefan Burr.** He did not publish it. It appeared, and credited to him, in

KID KAP KID KID KID DA GA

The main theorem of these slides is due to **Stefan Burr.** He did not publish it. It appeared, and credited to him, in Euclidean Ramsey Theorems I

KID KAP KID KID KID DA GA

The main theorem of these slides is due to **Stefan Burr.** He did not publish it. It appeared, and credited to him, in Euclidean Ramsey Theorems I by

Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

KORKA SERVER ORA

The main theorem of these slides is due to **Stefan Burr.** He did not publish it. It appeared, and credited to him, in Euclidean Ramsey Theorems I by Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus. Journal of Combinatorial Theory (A), Vol. 14, 341-363, 1973 [https://www.cs.umd.edu/~gasarch/TOPICS/eramsey/](https://www.cs.umd.edu/~gasarch/TOPICS/eramsey/eramseyOne.pdf)

KORKA SERVER ORA

[eramseyOne.pdf](https://www.cs.umd.edu/~gasarch/TOPICS/eramsey/eramseyOne.pdf)

Def a Mono Unit Square is a unit square with all four corners the same color.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Def a Mono Unit Square is a unit square with all four corners the same color.

KID KAP KID KID KID DA GA

Def A coloring is **proper** if there is no unit square.

Def a Mono Unit Square is a unit square with all four corners the same color.

KID KAP KID KID KID DA GA

Def A coloring is **proper** if there is no unit square.

Question Is there a proper 2-coloring of \mathbb{R}^2 ?

Def a Mono Unit Square is a unit square with all four corners the same color.

KORK ERKER ADAM ADA

Def A coloring is **proper** if there is no unit square.

Question Is there a proper 2-coloring of \mathbb{R}^2 ?

Answer Yes. We leave this for an exercise.

K ロ X x 4D X X B X X B X X D X O Q O

Vote

Vote

1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .

イロト 4 御 ト 4 差 ト 4 差 ト - 差 - 約 9 Q Q

Vote

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .

KID KAP KID KID KID DA GA

Vote

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .

KORK ERKER ADAM ADA

Vote

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .
- 4) There is a proper 2-col of \mathbb{R}^5 but not \mathbb{R}^6 .

KORKA SERVER ORA

Vote

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .
- 4) There is a proper 2-col of \mathbb{R}^5 but not \mathbb{R}^6 .
- 5) The exact cutoff is Unknown to Science!

KORKA SERVER ORA

Vote

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .
- 4) There is a proper 2-col of \mathbb{R}^5 but not \mathbb{R}^6 .
- 5) The exact cutoff is Unknown to Science!

KORKA SERVER ORA

The answer is on the next slide.

KOKK@KKEKKEK E 1990

Here is all that is known:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Here is all that is known:

 \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .

KID KAP KID KID KID DA GA

Here is all that is known:

- \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .
- \blacktriangleright There is no proper 2-col of \mathbb{R}^4 .

Here is all that is known:

- \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .
- \blacktriangleright There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

KORKA SERVER ORA

Here is all that is known:

- \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .
- \blacktriangleright There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

KORKA SERVER ORA

For all $\text{COL}: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

Here is all that is known:

- \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .
- \blacktriangleright There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

KORKAR KERKER DRA

For all $\text{COL}: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square. For all $\mathrm{COL}\colon\mathbb{R}^5\to [2]$ there exists a Mono Unit Square.

Here is all that is known:

- \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .
- \blacktriangleright There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

KORKAR KERKER DRA

For all $\text{COL}: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square. For all $\mathrm{COL}\colon\mathbb{R}^5\to [2]$ there exists a Mono Unit Square. The \mathbb{R}^5 result is really an observation about the \mathbb{R}^6 proof.

Here is all that is known:

- \blacktriangleright There is a proper 2-col of \mathbb{R}^2 .
- \blacktriangleright There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

For all $\text{COL}: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square. For all $\mathrm{COL}\colon\mathbb{R}^5\to [2]$ there exists a Mono Unit Square. The \mathbb{R}^5 result is really an observation about the \mathbb{R}^6 proof. We will also have comments on the \mathbb{R}^4 proof.

KORKAR KERKER DRA

The following theorem is due to Stefan Burr, as noted earlier.

K ロ K K B K K R K R H X B K Y Q Q Q Q

The following theorem is due to Stefan Burr, as noted earlier. Thm For all $COL: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

KO KA KO KE KA E KA SA KA KA KA KA KA A

The following theorem is due to Stefan Burr, as noted earlier. Thm For all $COL: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square. Let $COL: \mathbb{R}^6 \to [2]$.

KO KA KO KE KA E KA SA KA KA KA KA KA A

The following theorem is due to Stefan Burr, as noted earlier. Thm For all $COL: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square. Let $COL: \mathbb{R}^6 \to [2]$. We form a coloring COL' : $\binom{[6]}{2}$ $_{2}^{6j}) \rightarrow [2].$

KID K 4 D X R B X R B X D A Q Q

We look at the following 15 points of $\R^6.$

We look at the following 15 points of $\R^6.$ $p_{1,2} = (\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0, 0).

KID KAP KID KID KID DA GA

We look at the following 15 points of
$$
\mathbb{R}^6
$$
.
\n $p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0).$
\n $p_{1,3} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0).$

KOKK@KKEKKEK E 1990

We look at the following 15 points of $\R^6.$ $p_{1,2} = (\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0, 0). $p_{1,3}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, 0, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0). . . .

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q ◇

We look at the following 15 points of
$$
\mathbb{R}^6
$$
.
\n
$$
p_{1,2} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0\right).
$$
\n
$$
p_{1,3} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0\right).
$$
\n
$$
\vdots
$$
\n
$$
p_{5,6} = (0, 0, 0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).
$$

KOKK@KKEKKEK E 1990

We look at the following 15 points of
$$
\mathbb{R}^6
$$
.
\n
$$
p_{1,2} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0\right).
$$
\n
$$
p_{1,3} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0\right).
$$
\n
$$
\vdots
$$
\n
$$
p_{5,6} = (0, 0, 0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).
$$

K ロ K K B K K R K R H X B K Y Q Q Q Q

Define $\mathrm{COL}'(i,j) = \mathrm{COL}(p_{i,j}).$

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 .

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume

KO KA KO KE KA E KA SA KA KA KA KA KA A

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$

KORKA SERVER ORA

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$

KORKAR KERKER DRA

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$ These points form a unit square:

KORKARA KERKER DAGA

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$ These points form a unit square:

KORKARA KERKER DAGA

 $p_{i,i+1}$ and $p_{i+1,i+2}$

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$ These points form a unit square: $p_{i,i+1}$ and $p_{i+1,i+2}$

KORKARA KERKER DAGA

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$ These points form a unit square: $p_{i,i+1}$ and $p_{i+1,i+2}$

KORKAR KERKER DRA

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

On *i*th coordinate $p_{i,i+1}$ is 0, $p_{i+1,i+2}$ is $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$.

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$ These points form a unit square: $p_{i,i+1}$ and $p_{i+1,i+2}$

KORKAR KERKER DRA

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

On *i*th coordinate $p_{i,i+1}$ is 0, $p_{i+1,i+2}$ is $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$.

On all other coordinates $p_{i,i+1}$ and $p_{i+1,i+2}$ agree.

 C_4 Thm For all 2-colorings of $\binom{[6]}{2}$ $\binom{[0]}{2}$ \rightarrow $[2]$ there is a mono C_4 . By Thm, COL' has a mono \mathcal{C}_4 . We assume $COL'(1, 2) = COL'(2, 3) = COL'(3, 4) = COL'(4, 1) = R$ Hence $COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$ These points form a unit square: $p_{i,i+1}$ and $p_{i+1,i+2}$

KORKAR KERKER DRA

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0. On *i*th coordinate $p_{i,i+1}$ is 0, $p_{i+1,i+2}$ is $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$.

On all other coordinates $p_{i,i+1}$ and $p_{i+1,i+2}$ agree.

Hence
$$
d(p_{i,i+1}, p_{i+1,i+2}) = \sqrt{(\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2} = 1.
$$

Improvements On \mathbb{R}^6

KID KAR KE KE KE YA GA

Observation The 15 vectors

Observation The 15 vectors $p_{1,2}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0, 0),

KID KAR KE KE KE YA GA

Observation The 15 vectors $p_{1,2}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}, 0, 0, 0, 0)$, $\rho_{1,3}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, 0, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0),

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Observation The 15 vectors $p_{1,2}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}, 0, 0, 0, 0), \ p_{1,3}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, 0, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0), \cdots , $p_{5,6}=(0,0,0,0,\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$.

KORKARA KERKER DAGA

Observation The 15 vectors $p_{1,2}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}, 0, 0, 0, 0), \ p_{1,3}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, 0, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0), \cdots , $p_{5,6}=(0,0,0,0,\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$. Span a 5-dimensional subspace H of \mathbb{R}^6 .

KORKAR KERKER ST VOOR

Observation The 15 vectors $p_{1,2}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}, 0, 0, 0, 0), \ p_{1,3}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, 0, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0), \cdots , $p_{5,6}=(0,0,0,0,\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$. Span a 5-dimensional subspace H of \mathbb{R}^6 . Thm For all $COL: \mathbb{R}^5 \to [2]$ there exists a Mono Unit Square.

KORKAR KERKER ST VOOR

Observation The 15 vectors $p_{1,2}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}, 0, 0, 0, 0),\; p_{1,3}=(\frac{1}{\sqrt{2}})$ $\frac{1}{2}, 0, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, 0, 0), \cdots , $p_{5,6}=(0,0,0,0,\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$. Span a 5-dimensional subspace H of \mathbb{R}^6 . Thm For all $COL: \mathbb{R}^5 \to [2]$ there exists a Mono Unit Square. Use that a coloring of \mathbb{R}^5 can be viewed as a coloring of H and then use the proof we did for $\mathbb{R}^6.$

KORKAR KERKER DRAM

Note that the proof we presented for \mathbb{R}^6 used very little geometry.

KID KAR KE KE KE YA GA

K ロ K K B K K R K R H X B K Y Q Q Q Q

Kent Cantwell showed

KO KA KO KE KA E KA SA KA KA KA KA KA A

Kent Cantwell showed Thm For all COL: $\mathbb{R}^4 \to [2]$ there exists a Mono Unit Square.

Kent Cantwell showed Thm For all COL: $\mathbb{R}^4 \to [2]$ there exists a Mono Unit Square. His proof used a lot more geometry than the proof for \mathbb{R}^6 and \mathbb{R}^5 .

KORKAR KERKER SAGA

Kent Cantwell showed Thm For all COL: $\mathbb{R}^4 \to [2]$ there exists a Mono Unit Square. His proof used a lot more geometry than the proof for \mathbb{R}^6 and \mathbb{R}^5 . Here is the link to the paper: [https://www.cs.umd.edu/~gasarch/COURSES/752/S25/](https://www.cs.umd.edu/~gasarch/COURSES/752/S25/slides/R4square.pdf) [slides/R4square.pdf](https://www.cs.umd.edu/~gasarch/COURSES/752/S25/slides/R4square.pdf)

KORKAR KERKER SAGA