When Does a 2-Coloring Yield a Mono Unit Square?

Exposition by William Gasarch

November 20, 2024

The main theorem of these slides is due to **Stefan Burr**.

The main theorem of these slides is due to **Stefan Burr**. He did not publish it. It appeared, and credited to him, in

The main theorem of these slides is due to **Stefan Burr**. He did not publish it. It appeared, and credited to him, in **Euclidean Ramsey Theorems I**

The main theorem of these slides is due to **Stefan Burr**.

He did not publish it. It appeared, and credited to him, in

Euclidean Ramsey Theorems I

by

Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

The main theorem of these slides is due to **Stefan Burr**.

He did not publish it. It appeared, and credited to him, in

Euclidean Ramsey Theorems I

by

Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

Journal of Combinatorial Theory (A), Vol. 14, 341-363, 1973

https://www.cs.umd.edu/~gasarch/TOPICS/eramsey/eramseyOne.pdf

Def a **Mono Unit Square** is a unit square with all four corners the same color.

Def a **Mono Unit Square** is a unit square with all four corners the same color.

Def A coloring is **proper** if there is no unit square.

Def a **Mono Unit Square** is a unit square with all four corners the same color.

Def A coloring is **proper** if there is no unit square.

Question Is there a proper 2-coloring of \mathbb{R}^2 ?

Def a **Mono Unit Square** is a unit square with all four corners the same color.

Def A coloring is **proper** if there is no unit square.

Question Is there a proper 2-coloring of \mathbb{R}^2 ?

Answer Yes. We leave this for an exercise.

Vote

1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .
- 4) There is a proper 2-col of \mathbb{R}^5 but not \mathbb{R}^6 .

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .
- 4) There is a proper 2-col of \mathbb{R}^5 but not \mathbb{R}^6 .
- 5) The exact cutoff is Unknown to Science!

Vote

- 1) There is a proper 2-col of \mathbb{R}^2 but not \mathbb{R}^3 .
- 2) There is a proper 2-col of \mathbb{R}^3 but not \mathbb{R}^4 .
- 3) There is a proper 2-col of \mathbb{R}^4 but not \mathbb{R}^5 .
- 4) There is a proper 2-col of \mathbb{R}^5 but not \mathbb{R}^6 .
- 5) The exact cutoff is Unknown to Science!

The answer is on the next slide.

Here is all that is known:

Here is all that is known:

▶ There is a proper 2-col of \mathbb{R}^2 .

Here is all that is known:

- ▶ There is a proper 2-col of \mathbb{R}^2 .
- ▶ There is no proper 2-col of \mathbb{R}^4 .

Here is all that is known:

- ▶ There is a proper 2-col of \mathbb{R}^2 .
- ▶ There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

Here is all that is known:

- ▶ There is a proper 2-col of \mathbb{R}^2 .
- ▶ There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

For all $COL \colon \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

Here is all that is known:

- ▶ There is a proper 2-col of \mathbb{R}^2 .
- ▶ There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

For all COL: $\mathbb{R}^6 \to [2]$ there exists a Mono Unit Square. For all COL: $\mathbb{R}^5 \to [2]$ there exists a Mono Unit Square.

Here is all that is known:

- ▶ There is a proper 2-col of \mathbb{R}^2 .
- ▶ There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

For all COL: $\mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

For all $\mathrm{COL} \colon \mathbb{R}^5 \to [2]$ there exists a Mono Unit Square.

The \mathbb{R}^5 result is really an observation about the \mathbb{R}^6 proof.

Here is all that is known:

- ▶ There is a proper 2-col of \mathbb{R}^2 .
- ▶ There is no proper 2-col of \mathbb{R}^4 .

The proof is a bit beyond this class so we prove the following instead: We will show that

For all $\mathrm{COL} \colon \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

For all $\mathrm{COL} \colon \mathbb{R}^5 \to [2]$ there exists a Mono Unit Square.

The \mathbb{R}^5 result is really an observation about the \mathbb{R}^6 proof.

We will also have comments on the \mathbb{R}^4 proof.

The following theorem is due to Stefan Burr, as noted earlier.

The following theorem is due to Stefan Burr, as noted earlier. Thm For all COL: $\mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

The following theorem is due to Stefan Burr, as noted earlier. Thm For all $COL: \mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

Let $COL \colon \mathbb{R}^6 \to [2]$.

The following theorem is due to Stefan Burr, as noted earlier. Thm For all COL: $\mathbb{R}^6 \to [2]$ there exists a Mono Unit Square.

Let COL: $\mathbb{R}^6 \to [2]$.

We form a coloring $COL': \binom{[6]}{2} \to [2]$.

We look at the following 15 points of \mathbb{R}^6 .

We look at the following 15 points of \mathbb{R}^6 . $p_{1,2}=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0,0,0,0)$.

We look at the following 15 points of \mathbb{R}^6 .

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0).$$

$$p_{1,3}=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0,0,0).$$

We look at the following 15 points of \mathbb{R}^6 .

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0).$$

$$p_{1,3}=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0,0,0).$$

:

We look at the following 15 points of \mathbb{R}^6 .

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0).$$

$$p_{1,3}=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0,0,0).$$

:

$$p_{5,6} = (0,0,0,0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}).$$

We Look at 15 Points in \mathbb{R}^6

We look at the following 15 points of \mathbb{R}^6 .

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0).$$

$$p_{1,3}=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0,0,0).$$

:

$$p_{5,6} = (0,0,0,0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}).$$

Define $COL'(i,j) = COL(p_{i,j})$.

 $\emph{\textbf{C}}_{4}$ **Thm** For all 2-colorings of $\binom{[6]}{2} \rightarrow [2]$ there is a mono $\emph{\textbf{C}}_{4}.$

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \to [2]$ there is a mono C_4 . By Thm, COL' has a mono C_4 . We assume

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \to [2]$ there is a mono C_4 . By Thm, COL' has a mono C_4 . We assume $\mathrm{COL}'(1,2) = \mathrm{COL}'(2,3) = \mathrm{COL}'(3,4) = \mathrm{COL}'(4,1) = \mathbb{R}$

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \rightarrow [2]$ there is a mono C_4 . By Thm, COL' has a mono C_4 . We assume $\operatorname{COL}'(1,2) = \operatorname{COL}'(2,3) = \operatorname{COL}'(3,4) = \operatorname{COL}'(4,1) = \mathbb{R}$ Hence $\operatorname{COL}(p_{1,2}) = \operatorname{COL}(p_{2,3}) = \operatorname{COL}(p_{3,4}) = \operatorname{COL}(p_{4,1}) = \mathbb{R}$

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \to [2]$ there is a mono C_4 . By Thm, COL' has a mono C_4 . We assume $\operatorname{COL}'(1,2) = \operatorname{COL}'(2,3) = \operatorname{COL}'(3,4) = \operatorname{COL}'(4,1) = \mathbb{R}$ Hence $\operatorname{COL}(p_{1,2}) = \operatorname{COL}(p_{2,3}) = \operatorname{COL}(p_{3,4}) = \operatorname{COL}(p_{4,1}) = \mathbb{R}$ These points form a unit square:

 $p_{i,i+1}$ and $p_{i+1,i+2}$

 \emph{C}_4 Thm For all 2-colorings of $\binom{[6]}{2} \rightarrow [2]$ there is a mono \emph{C}_4 . By Thm, COL' has a mono \emph{C}_4 . We assume $\mathrm{COL}'(1,2) = \mathrm{COL}'(2,3) = \mathrm{COL}'(3,4) = \mathrm{COL}'(4,1) = \mathbf{R}$ Hence $\mathrm{COL}(p_{1,2}) = \mathrm{COL}(p_{2,3}) = \mathrm{COL}(p_{3,4}) = \mathrm{COL}(p_{4,1}) = \mathbf{R}$ These points form a unit square:

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \to [2]$ there is a mono C_4 .

By Thm, COL' has a mono C_4 . We assume

$$\mathrm{COL}'(1,2) = \mathrm{COL}'(2,3) = \mathrm{COL}'(3,4) = \mathrm{COL}'(4,1) = \textbf{R}$$

Hence

$$COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = \mathsf{R}$$

These points form a unit square:

$$p_{i,i+1}$$
 and $p_{i+1,i+2}$

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \rightarrow [2]$ there is a mono C_4 .

By Thm, COL' has a mono C_4 . We assume

$$\mathrm{COL}'(1,2) = \mathrm{COL}'(2,3) = \mathrm{COL}'(3,4) = \mathrm{COL}'(4,1) = \textbf{R}$$

Hence

$$COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = R$$

These points form a unit square:

$$p_{i,i+1}$$
 and $p_{i+1,i+2}$

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

On *i*th coordinate $p_{i,i+1}$ is 0, $p_{i+1,i+2}$ is $\frac{1}{\sqrt{2}}$.

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \rightarrow [2]$ there is a mono C_4 .

By Thm, COL' has a mono C_4 . We assume

$$\mathrm{COL}'(1,2) = \mathrm{COL}'(2,3) = \mathrm{COL}'(3,4) = \mathrm{COL}'(4,1) = \textbf{R}$$

Hence

$$COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = \mathbf{R}$$

These points form a unit square:

$$p_{i,i+1}$$
 and $p_{i+1,i+2}$

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

On *i*th coordinate $p_{i,i+1}$ is 0, $p_{i+1,i+2}$ is $\frac{1}{\sqrt{2}}$.

On all other coordinates $p_{i,i+1}$ and $p_{i+1,i+2}$ agree.

 C_4 Thm For all 2-colorings of $\binom{[6]}{2} \rightarrow [2]$ there is a mono C_4 .

By Thm, COL' has a mono C_4 . We assume

$$\mathrm{COL}'(1,2) = \mathrm{COL}'(2,3) = \mathrm{COL}'(3,4) = \mathrm{COL}'(4,1) = \textbf{R}$$

Hence

$$COL(p_{1,2}) = COL(p_{2,3}) = COL(p_{3,4}) = COL(p_{4,1}) = \mathbf{R}$$

These points form a unit square:

$$p_{i,i+1}$$
 and $p_{i+1,i+2}$

On *i*th coordinate $p_{i,i+1}$ is f, $p_{i+1,i+2}$ is 0.

On *i*th coordinate $p_{i,i+1}$ is 0, $p_{i+1,i+2}$ is $\frac{1}{\sqrt{2}}$.

On all other coordinates $p_{i,i+1}$ and $p_{i+1,i+2}$ agree.

Hence
$$d(p_{i,i+1},p_{i+1,i+2}) = \sqrt{(\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2} = 1.$$

Improvements On \mathbb{R}^6

Observation The 15 vectors

Observation The 15 vectors $p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0),$

Observation The 15 vectors

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0), p_{1,3} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0),$$

Observation The 15 vectors

$$p_{1,2}=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0,0,0,0),\; p_{1,3}=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0,0,0),\; \cdots, \\ p_{5,6}=(0,0,0,0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}).$$

Observation The 15 vectors

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0), p_{1,3} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0), \dots, p_{5,6} = (0, 0, 0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

Span a 5-dimensional subspace H of \mathbb{R}^6 .

Observation The 15 vectors

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0), p_{1,3} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0), \cdots, p_{5,6} = (0, 0, 0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

Span a 5-dimensional subspace H of \mathbb{R}^6 .

Thm For all COL: $\mathbb{R}^5 \to [2]$ there exists a Mono Unit Square.

Observation The 15 vectors

$$p_{1,2} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0, 0), p_{1,3} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, 0, 0), \cdots, p_{5,6} = (0, 0, 0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

Span a 5-dimensional subspace H of \mathbb{R}^6 .

Thm For all $COL: \mathbb{R}^5 \to [2]$ there exists a Mono Unit Square. Use that a coloring of \mathbb{R}^5 can be viewed as a coloring of H and then use the proof we did for \mathbb{R}^6 .

Note that the proof we presented for \mathbb{R}^6 used very little geometry.

Note that the proof we presented for \mathbb{R}^6 used very little geometry.

Kent Cantwell showed

Note that the proof we presented for \mathbb{R}^6 used very little geometry.

Kent Cantwell showed Thm For all $\mathrm{COL}\colon \mathbb{R}^4 \to [2]$ there exists a Mono Unit Square.

Note that the proof we presented for \mathbb{R}^6 used very little geometry.

Kent Cantwell showed

The For all COL: $\mathbb{R}^4 \rightarrow [2]$ there exists a

Thm For all COL: $\mathbb{R}^4 \to [2]$ there exists a Mono Unit Square.

His proof used a lot more geometry than the proof for \mathbb{R}^6 and \mathbb{R}^5 .

Note that the proof we presented for \mathbb{R}^6 used very little geometry.

Kent Cantwell showed

Thm For all COL: $\mathbb{R}^4 \to [2]$ there exists a Mono Unit Square.

His proof used a lot more geometry than the proof for \mathbb{R}^6 and \mathbb{R}^5 . Here is the link to the paper:

https://www.cs.umd.edu/~gasarch/COURSES/752/S25/slides/R4square.pdf