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Review of PH(k)

Def A ⊆ N is large if |A| > min(A).

Def PH(k) is the least n such that for all 2-colorings of
({k,...,n}

2

)
there exists a large homog set.
(PH stands for Paris-Harrington.)

Def PH(2) is the least n such that for all 2-colorings of
({2,...,n}

2

)
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Let COL :
({2,...,14}
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)
→[2]. We show there is a large homog set.

Note The graph has 13 vertices so every point has degree 12.
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degR(2) ≥ 8, so degB(2) ≤ 4

Case 1 degR(2) ≥ 8. Let the 8 smallest R-neighbors of 2 be
x1 < · · · < x8.

I There exists 1 ≤ i < j ≤ 8 such that COL(xi , xj) = R.
Large homog set: {2, xi , xj}.

I For all 1 ≤ i < j ≤ 8, COL(xi , xj) = B AND x1 ≤ 7.
Large homog set: {x1, x2, x3, x4, x5, x6, x7, x8}.

I For all 1 ≤ i < j ≤ 8, COL(xi , xj) = B AND x1 ≥ 8.
x2 ≥ 9, x3 ≥ 10, · · · , x8 ≥ 15.
Contradiction since we are coloring

({2,...,14}
2

)
.
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degR(2) = 7, so degB(2) = 5

Case 2 degR(2) = 7. Let the 7 smallest R-neighbors of 2 be
x1 < · · · < x7.

I There exists 1 ≤ i < j ≤ 7 such that COL(xi , xj) = R.
Large homog set: {2, xi , xj}.

I For all 1 ≤ i < j ≤ 7, COL(xi , xj) = B AND x1 ≤ 6.
Large homog set: {x1, x2, x3, x4, x5, x6, x7}.

Last Case on Next Slide.



degR(2) = 7, so degB(2) = 5

Case 2 degR(2) = 7. Let the 7 smallest R-neighbors of 2 be
x1 < · · · < x7.

I There exists 1 ≤ i < j ≤ 7 such that COL(xi , xj) = R.
Large homog set: {2, xi , xj}.

I For all 1 ≤ i < j ≤ 7, COL(xi , xj) = B AND x1 ≤ 6.
Large homog set: {x1, x2, x3, x4, x5, x6, x7}.

Last Case on Next Slide.



degR(2) = 7, so degB(2) = 5

Case 2 degR(2) = 7. Let the 7 smallest R-neighbors of 2 be
x1 < · · · < x7.

I There exists 1 ≤ i < j ≤ 7 such that COL(xi , xj) = R.
Large homog set: {2, xi , xj}.

I For all 1 ≤ i < j ≤ 7, COL(xi , xj) = B AND x1 ≤ 6.
Large homog set: {x1, x2, x3, x4, x5, x6, x7}.

Last Case on Next Slide.



degR(2) = 7, so degB(2) = 5

Case 2 degR(2) = 7. Let the 7 smallest R-neighbors of 2 be
x1 < · · · < x7.

I There exists 1 ≤ i < j ≤ 7 such that COL(xi , xj) = R.
Large homog set: {2, xi , xj}.

I For all 1 ≤ i < j ≤ 7, COL(xi , xj) = B AND x1 ≤ 6.
Large homog set: {x1, x2, x3, x4, x5, x6, x7}.

Last Case on Next Slide.



degR(2) = 7, so degB(2) = 5 (cont)

Case 2 degR(2) = 7. Let the 7 smallest R-neighbors of 2 be
x1 < · · · < x7.

Remaining Case

For all 1 ≤ i < j ≤ 7, COL(xi , xj) = B AND x1 ≥ 7.
Hence {x1, . . . , x7} ⊆ {7, 8, 9, 10, 11, 12, 13, 14}.
Hence B neighbors of 2 are ⊇ {3, 4, 5, 6}.
Cases

I There exists 3 ≤ i < j ≤ 6 such that (i , j) is B.
Large Homog Set: {2, i , j}.

I For all 3 ≤ i < j ≤ 6, (i , j) is R.
Large Homog Set: {3, 4, 5, 6}.
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degR(2) ≤ 5

Case 4 degR(2) ≤ 5. Then degB(2) ≥ 7.
If degB(2) = 7 use the argument used for degR(2) = 7.
If degB(2) ≥ 8 use the argument used for degR(2) ≥ 8.
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What About PH(3)? PH(4)?

We know that PH(2) = 8.

What about PH(3)?

Known

PH(3) = 13 Gee, thats not so big.

What about PH(4)?
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PH(4) ≤ 687 Gee, looking bigger.

The results on PH(2),PH(3),PH(4) were done in 1978.

I do not think anyone has looked at actual PH numbers since then.

Surely we can make progress now, perhaps with computers.
Yes, but don’t call me Shirley.
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