BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

All 2-Coloring Of the Plane have a Red 2-Stick or Blue 3-stick

Exposition by William Gasarch-U of MD

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Credit Where Credit is Due

The main result in these slides is due to Szlam (1999).

In the last lecture we proved

In the last lecture we proved Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

In the last lecture we proved Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart. We rephrase this but first need some definitions.

In the last lecture we proved Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart. We rephrase this but first need some definitions. Def

In the last lecture we proved **Thm** \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart. We rephrase this but first need some definitions. **Def** 1) ℓ_2 is 2 points in the plane an inch apart.

In the last lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

ション ふゆ アメリア メリア しょうくしゃ

We rephrase this but first need some definitions.

Def

1) ℓ_2 is 2 points in the plane an inch apart. 2) ℓ_3 is three colinear points p_1, p_2, p_3 where $d(p_1, p_2) = d(p_2, p_3) = 1$.

In the last lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

ション ふゆ アメリア メリア しょうくしゃ

We rephrase this but first need some definitions.

Def

ℓ₂ is 2 points in the plane an inch apart.
 ℓ₃ is three colinear points p₁, p₂, p₃ where d(p₁, p₂) = d(p₂, p₃) = 1.
 You can define ℓ_k.

In the last lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

 ℓ₂ is 2 points in the plane an inch apart.
 ℓ₃ is three colinear points p₁, p₂, p₃ where d(p₁, p₂) = d(p₂, p₃) = 1.
 You can define ℓ_k.
 Given a COL: ℝ² → [2] a Red ℓ_k is an ℓ_k where all the points in it are Red. Similar for a Blue ℓ_k

In the last lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

 ℓ₂ is 2 points in the plane an inch apart.
 ℓ₃ is three colinear points p₁, p₂, p₃ where d(p₁, p₂) = d(p₂, p₃) = 1.
 You can define ℓ_k.
 Given a COL: ℝ² → [2] a Red ℓ_k is an ℓ_k where all the points in it are Red. Similar for a Blue ℓ_k
 And now the restatement

In the last lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

1) ℓ_2 is 2 points in the plane an inch apart. 2) ℓ_3 is three colinear points p_1, p_2, p_3 where $d(p_1, p_2) = d(p_2, p_3) = 1$. 3) You can define ℓ_k . 4) Given a COL: $\mathbb{R}^2 \to [2]$ a Red ℓ_k is an ℓ_k where all the points in it are Red. Similar for a Blue ℓ_k And now the restatement

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a **Red** ℓ_2 or a **Blue** ℓ_2 .

Is the following true:

Is the following true: $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists \text{ either a } \text{Red } \ell_2 \text{ or a } \text{Blue } \ell_3.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Is the following true: $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists \text{ either a } \text{Red } \ell_2 \text{ or a } \text{Blue } \ell_3.$ Vote

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Is the following true: $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists \text{ either a } \text{Red } \ell_2 \text{ or a } \text{Blue } \ell_3.$ **Vote**

Y,N, Unknown to Science!

Is the following true: $\forall \text{ COL}: \mathbb{R}^2 \rightarrow [2] \exists \text{ either a } \text{Red } \ell_2 \text{ or a } \text{Blue } \ell_3.$ **Vote** Y,N, Unknown to Science!

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Answer on next slide

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a **Red** ℓ_2 or a **Blue** ℓ_3 .

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \rightarrow [2]$.

Thm $\forall \text{ COL}: \mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \rightarrow [2]$. Case 1 There exists a Blue ℓ_3 .

Thm $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \to [2]$. Case 1 There exists a Blue ℓ_3 . Then done.

Thm $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \to [2]$. Case 1 There exists a Blue ℓ_3 . Then done. Case 2 There is no Blue ℓ_3 .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Thm $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \to [2]$. Case 1 There exists a Blue ℓ_3 . Then done. Case 2 There is no Blue ℓ_3 . Hence for all points $(x, y) \in \mathbb{R}^2$,

Thm $\forall \text{ COL}: \mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \rightarrow [2]$. Case 1 There exists a Blue ℓ_3 . Then done. Case 2 There is no Blue ℓ_3 . Hence for all points $(x, y) \in \mathbb{R}^2$, at least one of (x, y), (x, y + 1), (x, y + 2) is R.

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \rightarrow [2]$. Case 1 There exists a Blue ℓ_3 . Then done. Case 2 There is no Blue ℓ_3 . Hence for all points $(x, y) \in \mathbb{R}^2$, at least one of (x, y), (x, y + 1), (x, y + 2) is R. We define COL': $\mathbb{R}^2 \rightarrow [3]$ as follows:

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \rightarrow [2]$. Case 1 There exists a Blue ℓ_3 . Then done. Case 2 There is no Blue ℓ_3 . Hence for all points $(x, y) \in \mathbb{R}^2$, at least one of (x, y), (x, y + 1), (x, y + 2) is **R**. We define COL': $\mathbb{R}^2 \rightarrow [3]$ as follows: COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that COL $(x, y + i) = \mathbb{R}$.

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a **Red** ℓ_2 or a **Blue** ℓ_3 . Let COL: $\mathbb{R}^2 \to [2]$. **Case 1** There exists a **Blue** ℓ_3 . Then done. **Case 2** There is no **Blue** ℓ_3 . Hence for all points $(x, y) \in \mathbb{R}^2$. at least one of (x, y), (x, y + 1), (x, y + 2) is **R**. We define $COL': \mathbb{R}^2 \to [3]$ as follows: COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$. This is well defined because of the case we are in.

・ロト・個ト・ヨト・ヨト ヨー りへぐ

 $\operatorname{COL}'(x, y)$ is the least $i \in \{0, 1, 2\}$ such that $\operatorname{COL}(x, y + i) = \mathbb{R}$.

 $\operatorname{COL}'(x, y)$ is the least $i \in \{0, 1, 2\}$ such that $\operatorname{COL}(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\operatorname{COL}'(x, y)$ is the least $i \in \{0, 1, 2\}$ such that $\operatorname{COL}(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that $d((x_1, y_1), (x_2, y_2)) = 1$ and $\operatorname{COL}'(x_1, y_1) = \operatorname{COL}'(x_2, y_2) = i$.

 $\operatorname{COL}'(x, y)$ is the least $i \in \{0, 1, 2\}$ such that $\operatorname{COL}(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that $d((x_1, y_1), (x_2, y_2)) = 1$ and $\operatorname{COL}'(x_1, y_1) = \operatorname{COL}'(x_2, y_2) = i$. Hence $\operatorname{COL}(x_1, y_1 + i) = \mathbb{R}$ and $\operatorname{COL}(x_2, y_2 + i) = \mathbb{R}$

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that $d((x_1, y_1), (x_2, y_2)) = 1$ and $COL'(x_1, y_1) = COL'(x_2, y_2) = i$. Hence $COL(x_1, y_1 + i) = \mathbb{R}$ and $COL(x_2, y_2 + i) = \mathbb{R}$ Since $d((x_1, y_1), (x_2, y_2)) = 1$, $d((x_1, y_1 + i), (x_2, y_2 + i)) = 1$,

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that $d((x_1, y_1), (x_2, y_2)) = 1$ and $COL'(x_1, y_1) = COL'(x_2, y_2) = i$. Hence $COL(x_1, y_1 + i) = \mathbb{R}$ and $COL(x_2, y_2 + i) = \mathbb{R}$ Since $d((x_1, y_1), (x_2, y_2)) = 1$, $d((x_1, y_1 + i), (x_2, y_2 + i)) = 1$, So $(x_1, y_1 + 1)$ and $(x_2, y_2 + 1)$ are a Red ℓ_2 .

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that $d((x_1, y_1), (x_2, y_2)) = 1$ and $COL'(x_1, y_1) = COL'(x_2, y_2) = i$. Hence $COL(x_1, y_1 + i) = \mathbb{R}$ and $COL(x_2, y_2 + i) = \mathbb{R}$ Since $d((x_1, y_1), (x_2, y_2)) = 1$, $d((x_1, y_1 + i), (x_2, y_2 + i)) = 1$, So $(x_1, y_1 + 1)$ and $(x_2, y_2 + 1)$ are a Red ℓ_2 . Done!

Can Prove Result About (ℓ_2, ℓ_4)

Using that the Chromatic Number of the Plane (χ) is ≤ 4 one can easily prove the following: Thm $\forall \text{ COL}: \mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_4 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Using that the Chromatic Number of the Plane (χ) is ≤ 4 one can easily prove the following: Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_4 . Juhasz prove the above theorem without using $\chi \leq 4$. In fact, he

prove the theorem in 1979, 39 years before $\chi \leq$ 4 was proven.

Notation Let $a, b \ge 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means $\forall \text{COL} \colon \mathbb{R}^2 \to [2] \exists \text{Red } \ell_n \text{ or Blue } \ell_m.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means $\forall \text{COL} \colon \mathbb{R}^2 \to [2] \exists \text{Red } \ell_n \text{ or Blue } \ell_m.$ We proved $\mathbb{R}^2 \to (\ell_2, \ell_3).$

Notation Let $a, b \ge 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means $\forall \text{COL} \colon \mathbb{R}^2 \to [2] \exists \text{Red } \ell_n \text{ or Blue } \ell_m.$ We proved $\mathbb{R}^2 \to (\ell_2, \ell_3).$ We will soon present statements about $\mathbb{R}^2 \to (\ell_2, \ell_n)$

・ロト・個ト・ヨト・ヨト ヨー りへぐ

The next two slides have statements about what is known.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The next two slides have statements about what is known. If you know of any paper that should be on the list but is not, let me know.

(ロト (個) (E) (E) (E) (E) のへの

The next two slides have statements about what is known.

If you know of any paper that should be on the list but is not, let me know.

All of the papers referred to are on this website:

https://www.cs.umd.edu/~gasarch/TOPICS/ERT/ert.html

The next two slides have statements about what is known.

If you know of any paper that should be on the list but is not, let me know.

All of the papers referred to are on this website:

https://www.cs.umd.edu/~gasarch/TOPICS/ERT/ert.html

$\mathbb{R}^2 \to (\ell_2, \ell_n) \textbf{?}$

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2, \ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2, \ell_6)$	NONE
Negative Results		
Csizmadia-Togh 1994	$\exists X \subseteq \mathbb{R}^2$, $ X = 8$	
	$\mathbb{R}^2 eq (\ell_2, X)$	NONE
Conlon-Fox, 2018	$(\forall n \ge 2)$	
	$\mathbb{R}^n eq (\ell_2, \ell_{10^{25}})$	$\mathbb{R}^2 eq (\ell_2, \ell_{10^{25}})$

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2, \ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2,\ell_6)$	NONE
Negative Results		
Csizmadia-Togh 1994	$\exists X \subseteq \mathbb{R}^2$, $ X = 8$	
	$\mathbb{R}^2 eq (\ell_2, X)$	NONE
Conlon-Fox, 2018	$(\forall n \ge 2)$	
	$\mathbb{R}^n earrow (\ell_2, \ell_{10^{25}})$	$\mathbb{R}^2 eq (\ell_2, \ell_{10^{25}})$

Open Narrow the gap between $\mathbb{R}^2 \to (\ell_2, \ell_5)$ and $\mathbb{R}_2 \not\to (\ell_2, \ell_{10^{25}})$.

◆□▶◆圖▶◆≧▶◆≧▶ ≧ のへぐ

All of the negative results hold for all $n \ge 2$. Our interest is in the

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\underline{n=2}$ case.	
Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3, \ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n eq (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4,\ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

All of the negative results hold for all $n \ge 2$. Our interest is in the

$\underline{n} = 2$ case.	
Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n eq (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

Open Problems

All of the negative results hold for all $n \ge 2$. Our interest is in the

$\underline{n=2}$ case.	
Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3, \ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n eq (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

Open Problems

Narrow the gap between $\mathbb{R}^2 \to (\ell_3, \ell_3)$ and $\mathbb{R}^2 \not\to (\ell_3, \ell_{20})$.

All of the negative results hold for all $n \ge 2$. Our interest is in the

n = 2 case.	
Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n ightarrow (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

Open Problems

Narrow the gap between $\mathbb{R}^2 o (\ell_3, \ell_3)$ and $\mathbb{R}^2
ot \to (\ell_3, \ell_{20})$.

The results of Fuhrer-Togh and Currie-Moore-Yip are messy. For some reasonable values of *n* find nice proofs that $\mathbb{R}^2 \not\rightarrow (\ell_3, \ell_n)$.

	Author and Year	Result
N	legative Results	
Erd	os et al. See Below	$\mathbb{R}_2 eq (\ell_6, \ell_6)$

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 eq (\ell_6, \ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 eq (\ell_6, \ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

The title of the paper is **Euclidean Ramsey Theorems I** and was (obviously) an early paper on Euclidean Ramsey Theory.

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 eq (\ell_6, \ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

The title of the paper is **Euclidean Ramsey Theorems I** and was (obviously) an early paper on Euclidean Ramsey Theory.

Open Problems

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 eq (\ell_6, \ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

The title of the paper is **Euclidean Ramsey Theorems I** and was (obviously) an early paper on Euclidean Ramsey Theory.

Open Problems

Find $a, b \ge 4$ such that $\mathbb{R}^2 \to (\ell_4, \ell_a)$, $\mathbb{R}^2 \not\to (\ell_4, \ell_b)$. It is possible that a does not exist and b = 4.

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 eq (\ell_6, \ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

The title of the paper is **Euclidean Ramsey Theorems I** and was (obviously) an early paper on Euclidean Ramsey Theory.

Open Problems

Find $a, b \ge 4$ such that $\mathbb{R}^2 \to (\ell_4, \ell_a)$, $\mathbb{R}^2 \not\to (\ell_4, \ell_b)$. It is possible that *a* does not exist and b = 4.

Find $a, b \ge 5$ such that $\mathbb{R}^2 \to (\ell_5, \ell_a)$, $\mathbb{R}^2 \not\to (\ell_5, \ell_b)$. It is possible that a does not exist and b = 5.

I emailed these slides to Conlon and Fox to ask

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to$ or $\mathbb{R}^n \not\to$ absent? (NO.)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to$ or $\mathbb{R}^n \not\to$ absent? (NO.) What does the good money say is true of the open problems?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to$ or $\mathbb{R}^n \not\to$ absent? (NO.) What does the good money say is true of the open problems? Fox's answer surprised me:

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to$ or $\mathbb{R}^n \not\to$ absent? (NO.) What does the good money say is true of the open problems? Fox's answer surprised me:

Some of these problems may be independent of ZF

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent}$? (NO.)

What does the good money say is true of the open problems? Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful.

I emailed these slides to Conlon and Fox to ask

Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent}$? (NO.)

What does the good money say is true of the open problems? Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful. Awesome Natural Problems Ind of ZF. Cool!

I emailed these slides to Conlon and Fox to ask

Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent}$? (NO.)

What does the good money say is true of the open problems? Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful. Awesome Natural Problems Ind of ZF. Cool! Awful I went answers! Dagnabbit!

I emailed these slides to Conlon and Fox to ask

- Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent}$? (NO.)
- What does the good money say is true of the open problems? Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful. Awesome Natural Problems Ind of ZF. Cool! Awful I went answers! Dagnabbit! Caveat If we assume choice these questions have answers.

I emailed these slides to Conlon and Fox to ask

- Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent}$? (NO.)
- What does the good money say is true of the open problems?
- Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful. Awesome Natural Problems Ind of ZF. Cool! Awful I went answers! Dagnabbit! Caveat If we assume choice these questions have answers. What Does Ind of ZF Mean? Proof will be hard and unlike known papers all of which are in ZF.

I emailed these slides to Conlon and Fox to ask

Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent}$? (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful. Awesome Natural Problems Ind of ZF. Cool! Awful I went answers! Dagnabbit! Caveat If we assume choice these questions have answers. What Does Ind of ZF Mean? Proof will be hard and unlike known papers all of which are in ZF. Conjectures? None.