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All 2-Coloring Of the Plane have a Red
2-Stick or Blue 3-stick

Exposition by William Gasarch-U of MD



Credit Where Credit is Due

The main result in these slides is due to Szlam (1999).



Chromatic Number of the Plane: Review

In the last lecture we proved

Thm ∀ COL : R2 → [2] ∃ 2 points, same color, 1 inch apart.

We rephrase this but first need some definitions.
Def
1) `2 is 2 points in the plane an inch apart.
2) `3 is three colinear points p1, p2, p3 where
d(p1, p2) = d(p2, p3) = 1.
3) You can define `k .
4) Given a COL : R2 → [2] a Red `k is an `k where all the points
in it are Red. Similar for a Blue `k
And now the restatement

Thm ∀ COL : R2 → [2] ∃ either a Red `2 or a Blue `2.
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Question

Is the following true:

∀ COL : R2 → [2] ∃ either a Red `2 or a Blue `3.
Vote
Y,N, Unknown to Science!
Answer on next slide
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For All 2-Colorings of The Plane . . .

Thm ∀ COL : R2 → [2] ∃ either a Red `2 or a Blue `3.

Let COL : R2 → [2].

Case 1 There exists a Blue `3. Then done.

Case 2 There is no Blue `3.

Hence for all points (x , y) ∈ R2,
at least one of (x , y), (x , y + 1), (x , y + 2) is R.

We define COL′ : R2 → [3] as follows:

COL′(x , y) is the least i ∈ {0, 1, 2} such that COL(x , y + i) = R.

This is well defined because of the case we are in.
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Use That Chromatic Number of Plane is ≤ 3

COL′(x , y) is the least i ∈ {0, 1, 2} such that COL(x , y + i) = R.

Chrom number of plane is ≤ 3, so ∃ (x1, y1), (x2, y2) such that

d((x1, y1), (x2, y2)) = 1 and
COL′(x1, y1) = COL′(x2, y2) = i .

Hence COL(x1, y1 + i) = R and COL(x2, y2 + i) = R

Since d((x1, y1), (x2, y2)) = 1, d((x1, y1 + i), (x2, y2 + i)) = 1,

So (x1, y1 + 1) and (x2, y2 + 1) are a Red `2. Done!
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Can Prove Result About (`2, `4)

Using that the Chromatic Number of the Plane (χ) is ≤ 4 one can
easily prove the following:
Thm ∀ COL : R2 → [2] ∃ either a Red `2 or a Blue `4.

Juhasz prove the above theorem without using χ ≤ 4. In fact, he
prove the theorem in 1979, 39 years before χ ≤ 4 was proven.
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Notation

Notation Let a, b ≥ 2. R2 → (`n, `m) means

∀COL : R2 → [2] ∃ Red `n or Blue `m.

We proved R2 → (`2, `3).

We will soon present statements about R2 → (`2, `n)
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Notes About the Statements

The next two slides have statements about what is known.

If you know of any paper that should be on the list but is not, let
me know.

All of the papers referred to are on this website:
https://www.cs.umd.edu/~gasarch/TOPICS/ERT/ert.html

https://www.cs.umd.edu/~gasarch/TOPICS/ERT/ert.html
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R2 → (`2, `n)?

Author and Year Result About R2

Positive Results
Szlam, 1999 (∀X )[|X | = 3]

R2 → (`2,X ) R2 → (`2, `3)

Juhasz, 1979 (∀X )[|X | = 4]
R2 → (`2,X ) R2 → (`2, `4)

Congruence. See Paper.

Tsaturian, 2017 R2 → (`2, `5) R2 → (`2, `5)

Arman-Tsaturian, 2017 R3 → (`2, `6) NONE

Negative Results
Csizmadia-Togh 1994 ∃X ⊆ R2, |X | = 8

R2 6→ (`2,X ) NONE

Conlon-Fox, 2018 (∀n ≥ 2)
Rn 6→ (`2, `1025) R2 6→ (`2, `1025)

Open Narrow the gap between R2 → (`2, `5) and R2 6→ (`2, `1025).
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R2 → (`3, `n)?

All of the negative results hold for all n ≥ 2. Our interest is in the
n = 2 case.

Author and Year Result

Positive Results
Currier-Moore-Yip, 2024 R2 → (`3, `3)

Negative Results
Conlon-Wu, 2022 Rn 6→ (`3, `1050)
Fuhrer-Toth, 2024 Rn 6→ (`3, `1177)

Currier-Moore-Yip, 2024 Rn 6→ (`3, `20)
Rn 6→ (`4, `18)
Rn 6→ (`5, `10)

Open Problems

Narrow the gap between R2 → (`3, `3) and R2 6→ (`3, `20).

The results of Fuhrer-Togh and Currie-Moore-Yip are messy. For
some reasonable values of n find nice proofs that R2 6→ (`3, `n).
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Narrow the gap between R2 → (`3, `3) and R2 6→ (`3, `20).

The results of Fuhrer-Togh and Currie-Moore-Yip are messy. For
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One More Result

Author and Year Result

Negative Results
Erdos et al. See Below R2 6→ (`6, `6)

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

The title of the paper is Euclidean Ramsey Theorems I and was
(obviously) an early paper on Euclidean Ramsey Theory.

Open Problems

Find a, b ≥ 4 such that R2 → (`4, `a), R2 6→ (`4, `b). It is possible
that a does not exist and b = 4.

Find a, b ≥ 5 such that R2 → (`5, `a), R2 6→ (`5, `b). It is possible
that a does not exist and b = 5.
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What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask

Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.

Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!

Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!

Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.

What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.

Conjectures? None.



What Do People Think Is True?

I emailed these slides to Conlon and Fox to ask
Any results on Rn → or Rn 6→ absent? (NO.)

What does the good money say is true of the open problems?

Fox’s answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.
Awesome Natural Problems Ind of ZF. Cool!
Awful I went answers! Dagnabbit!
Caveat If we assume choice these questions have answers.
What Does Ind of ZF Mean? Proof will be hard and unlike
known papers all of which are in ZF.
Conjectures? None.


