Infinite Ramsey Theorem For Graphs

Exposition by William Gasarch

December 8, 2024

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{2}$ is constant. (From now on **homog**.)

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{2}$ is constant. (From now on **homog**.)

Party Definition There is a party. All the guests are members of A. Each pair either knows each other or does not know each other.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{2}$ is constant. (From now on **homog**.)

Party Definition There is a party. All the guests are members of A. Each pair either knows each other or does not know each other.

 $H \subseteq A$ is a **homog** if either

- (a) every pair of elements of H knows each other, or
- (b) every pair of elements of H does not knows each other.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

▶ An infinite subset $X \subseteq \mathbb{N}$.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

- ▶ An infinite subset $X \subseteq \mathbb{N}$.
- ► A 2-coloring of *X*

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

- ▶ An infinite subset $X \subseteq \mathbb{N}$.
- \triangleright A 2-coloring of X

We do some an example of the first few steps of the constuction.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

- ▶ An infinite subset $X \subseteq \mathbb{N}$.
- ► A 2-coloring of *X*

We do some an example of the first few steps of the constuction. My apologies to the math majors who are not used to seeing examples.

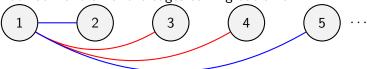
Examples of The First Few Steps of The Construction

Look at 1 and all of the edges coming out of it:

Look at 1 and all of the edges coming out of it:

1
2
3
4
5

Look at 1 and all of the edges coming out of it:



Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 1. We assume \mathbf{R} .

Look at 1 and all of the edges coming out of it:

Either \exists^{∞} **R** or \exists^{∞} of **B** coming out of 1. We assume **R**. If $COL(1, y) = \mathbf{R}$ we say that y agrees.

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 1. We assume \mathbf{R} .

If $COL(1, y) = \mathbf{R}$ we say that y agrees.

If $COL(1, y) \neq \mathbf{R}$ we say that y disagrees.

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 1. We assume \mathbf{R} .

If $COL(1, y) = \mathbb{R}$ we say that y agrees.

If $COL(1, y) \neq \mathbf{R}$ we say that y disagrees.

Kill all those who disagree!

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 1. We assume \mathbf{R} .

If $COL(1, y) = \mathbf{R}$ we say that y agrees.

If $COL(1, y) \neq \mathbf{R}$ we say that y disagrees.

Kill all those who disagree!

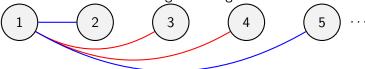
We have a picture of this on the next slide.

Look at 1 and all of the edges coming out of it:

Look at 1 and all of the edges coming out of it:

1
2
3
4
5

Look at 1 and all of the edges coming out of it:



Assume that 1 has an infinite number of R coming out of it.

Look at 1 and all of the edges coming out of it:

Assume that 1 has an infinite number of **R** coming out of it. We **kill** 2,5, and anyone else who disagrees!

Look at 1 and all of the edges coming out of it:

Assume that 1 has an infinite number of **R** coming out of it. We **kill** 2,5, and anyone else who disagrees!

Look at 1 and all of the edges coming out of it:

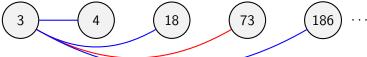
Assume that 1 has an infinite number of **R** coming out of it. We **kill** 2,5, and anyone else who disagrees!

We Omit 1 from future pictures but its **Still Alive and Well**. https://www.youtube.com/watch?v=8--jVqaU-G8.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

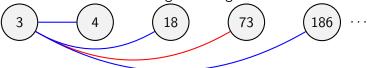
There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.



There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

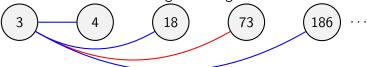
Look at 3 and all of the edges coming out of it.



Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 3. We assume \mathbf{B} .

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

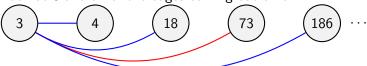
Look at 3 and all of the edges coming out of it.



Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 3. We assume \mathbf{B} . If $\mathrm{COL}(3,y) = \mathbf{B}$ we say that y agrees.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.



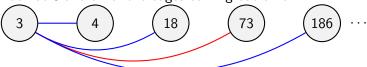
Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 3. We assume \mathbf{B} .

If $COL(3, y) = \mathbf{B}$ we say that y agrees.

If $COL(3, y) \neq B$ we say that y disagrees.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.



Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 3. We assume \mathbf{B} .

If COL(3, y) = B we say that y agrees.

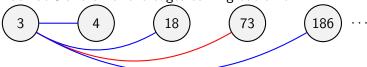
If $COL(3, y) \neq B$ we say that y disagrees.

Kill all those who disagree!

The Next Step

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.



Either $\exists^{\infty} \mathbf{R}$ or \exists^{∞} of \mathbf{B} coming out of 3. We assume \mathbf{B} .

If COL(3, y) = B we say that y agrees.

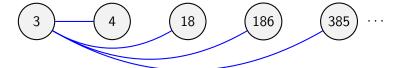
If $COL(3, y) \neq B$ we say that y disagrees.

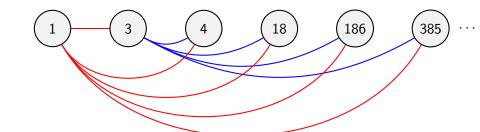
Kill all those who disagree!

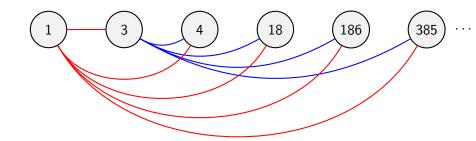
We have a picture of this on the next slide.

Node 3 Has The Blues

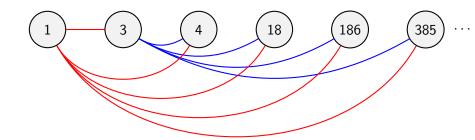
Node 3 Has The Blues



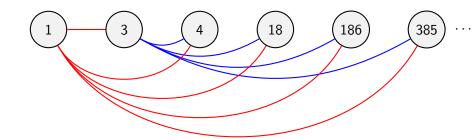




We could keep doing this with node 4, but messy!



We could keep doing this with node 4, but messy! Note that at this point nodes 1 and 3 cannot be killed.



We could keep doing this with node 4, but messy! Note that at this point nodes 1 and 3 cannot be killed. We formalize the real construction on the next slides.

Given COL: $\binom{\mathbb{N}}{2} \to [2]$ We Form COL'

Given COL: $\binom{\mathbb{N}}{2} \to [2]$ We Form COL'

We said earlier

Either \exists^{∞} R or \exists^{∞} of B coming out of 1

When we formalize this, we will color node 1 with that color.

We will then kill all nodes who disagree, but, and this is key

Given COL: $\binom{\mathbb{N}}{2} \to [2]$ We Form COL'

 $H_1 = \mathbb{N}$

$$H_1 = \mathbb{N}$$

 $x_1 = 1$

```
\begin{aligned} &H_1=\mathbb{N}\\ &x_1=1\\ &c_1=\textbf{R} \text{ if } |\{y\in H_1\colon \mathrm{COL}(x_1,y)=\textbf{R}\}|=\infty, \ \textbf{B} \text{ otherwise}. \end{aligned}
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}

x_2 = \text{the least element of } H_2 - \{x_1\}.
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}

x_2 = \text{the least element of } H_2 - \{x_1\}.

c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}

x_2 = \text{the least element of } H_2 - \{x_1\}.

c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
```

Assume H_s , x_s , c_s are defined.

```
\begin{split} &H_1 = \mathbb{N} \\ &x_1 = 1 \\ &c_1 = \mathbf{R} \text{ if } |\{y \in H_1 \colon \mathrm{COL}(x_1, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise.} \\ &H_2 = \{x_1\} \cup \{y \in H_1 \colon \mathrm{COL}(x_1, y) = c_1\} \\ &x_2 = \text{the least element of } H_2 - \{x_1\}. \\ &c_2 = \mathbf{R} \text{ if } |\{y \in H_2 \colon \mathrm{COL}(x_2, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise.} \\ &\text{Assume } H_s, \ x_s, \ c_s \text{ are defined.} \\ &H_{s+1} = \{x_s\} \cup \{y \in H_s \colon \mathrm{COL}(x_s, y) = c_s\} \end{split}
```

```
H_1 = \mathbb{N}
x_1 = 1
c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.
H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}
x_2 = the least element of H_2 - \{x_1\}.
c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
Assume H_s, x_s, c_s are defined.
H_{s+1} = \{x_s\} \cup \{y \in H_s : COL(x_s, y) = c_s\}
x_{s+1} = the least element of H_{s+1} - \{x_1, \dots, x_s\}.
```

```
H_1 = \mathbb{N}
x_1 = 1
c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.
H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}
x_2 = the least element of H_2 - \{x_1\}.
c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
Assume H_s, x_s, c_s are defined.
H_{s+1} = \{x_s\} \cup \{y \in H_s : COL(x_s, y) = c_s\}
x_{s+1} = the least element of H_{s+1} - \{x_1, \dots, x_s\}.
c_{s+1} = \mathbb{R} if |\{y \in H_{s+1} : COL(x_{s+1}, y) = \mathbb{R}\}| = \infty, B otherwise.
```

$$\begin{split} &H_1 = \mathbb{N} \\ &x_1 = 1 \\ &c_1 = \mathbf{R} \text{ if } |\{y \in H_1 \colon \mathrm{COL}(x_1, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise.} \\ &H_2 = \{x_1\} \cup \{y \in H_1 \colon \mathrm{COL}(x_1, y) = c_1\} \\ &x_2 = \text{the least element of } H_2 - \{x_1\}. \\ &c_2 = \mathbf{R} \text{ if } |\{y \in H_2 \colon \mathrm{COL}(x_2, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise.} \end{split}$$

Assume H_s , x_s , c_s are defined.

$$H_{s+1} = \{x_s\} \cup \{y \in H_s : COL(x_s, y) = c_s\}$$

 $x_{s+1} = \text{the least element of } H_{s+1} - \{x_1, \dots, x_s\}.$
 $c_{s+1} = \mathbb{R} \text{ if } |\{y \in H_{s+1} : COL(x_{s+1}, y) = \mathbb{R}\}| = \infty, \mathbb{B} \text{ otherwise.}$

$$X = \{x_1, x_2, \ldots\}$$

All of the edges from x_1 to the left are R.

All of the edges from x_1 to the left are R.

All of the edges from x_2 to the left are B.

All of the edges from x_1 to the left are R.

All of the edges from x_2 to the left are B.

All of the edges from x_3 to the left are B.

All of the edges from x_1 to the left are R.

All of the edges from x_2 to the left are B.

All of the edges from x_3 to the left are B.

All of the edges from x_4 to the left are R.

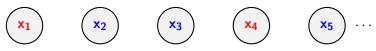
All of the edges from x_1 to the left are R. All of the edges from x_2 to the left are B. All of the edges from x_3 to the left are B. All of the edges from x_4 to the left are R.

All of the edges from x_5 to the left are B.

All of the edges from x_1 to the left are R. All of the edges from x_2 to the left are B. All of the edges from x_3 to the left are B. All of the edges from x_4 to the left are R. All of the edges from R0 to the left are R1.

All of the edges from x_1 to the left are R. All of the edges from x_2 to the left are B. All of the edges from x_3 to the left are B. All of the edges from x_4 to the left are R. All of the edges from x_5 to the left are R. All of the edges from R0 to the left are R1. What do you think our next step is?



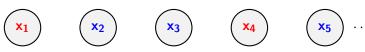


All of the edges from \boldsymbol{x}_s to the left are $\boldsymbol{c}_s.$

All of the edges from \boldsymbol{x}_s to the left are $\boldsymbol{c}_s.$

Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$



All of the edges from \boldsymbol{x}_s to the left are $\boldsymbol{c}_s.$

Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

$$\left(\mathbf{y_2}\right)$$

Some Color Appears Infinitely Often

All of the edges from \boldsymbol{x}_s to the left are $\boldsymbol{c}_s.$

Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

 y1
 y2
 y3
 y4
 y5
 ...

All of the edges from y_s to the left are R.

Some Color Appears Infinitely Often

All of the edges from x_s to the left are c_s . Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

All of the edges from y_s to the left are R. H is clearly a homog set!

Some Color Appears Infinitely Often

All of the edges from \boldsymbol{x}_s to the left are \boldsymbol{c}_s .

Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

All of the edges from y_s to the left are R. H is clearly a homog set! DONE!

Variants Of The Infinite Ramsey Theorem

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

What if we use *c* colors? Is the following true?

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

What if we use c colors? Is the following true?

Thm For all $c \in \mathbb{N}$, for all COL: $\binom{\mathbb{N}}{2} \to [c]$ there exists an infinite homog set.

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

What if we use c colors? Is the following true?

Thm For all $c \in \mathbb{N}$, for all COL: $\binom{\mathbb{N}}{2} \to [c]$ there exists an infinite homog set.

This is easy to prove using the same technique we used for the c=2 case.

Def

1) A **1-hypergraph** is (V, E) where $E \subseteq \binom{V}{1}$.

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq (\overline{V}_2)$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq (\overline{V})$.

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

Def

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq (V)$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

Def

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

We will define homog sets for colorings of the edges of an a-hypergraph and prove **Infinite Ramsey Thm for** a-hypergraphs.

Def

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

We will define homog sets for colorings of the edges of an a-hypergraph and prove **Infinite Ramsey Thm for** a-hypergraphs.

In a later lecture.

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

In a later lecture we will use

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

In a later lecture we will use

The Infinite Ramsey Thm For 2-Hypergraphs to prove

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ there exists an infinite homog set.

In a later lecture we will use
The Infinite Ramsey Thm For 2-Hypergraphs to prove
The Finite Ramsey Thm for 2-Hypergraphs:

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

In a later lecture we will use The Infinite Ramsey Thm For 2-Hypergraphs to prove The Finite Ramsey Thm for 2-Hypergraphs: Thm For all k there exists n = R(k) such that for all $COL: \binom{\mathbb{N}}{2} \to [2]$ there exists a homog set of size k.