Infinite Ramsey Theorem For 3-Hypergraph

Exposition by William Gasarch

December 10, 2024

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{a}$ is constant. (From now on **homog**.)

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of A. Each a-subset has either written a paper together or has not.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{a}$ is constant. (From now on **homog**.)

Party Definition There is a party. All the guests are members of A. Each a-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{2}$ is the set of all a-sized subsets of A.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{2}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of A. Each a-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either (a) every $\{x_1, \ldots, x_a\} \in {H \choose 2}$ has written a paper together, or

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{a}$ is constant. (From now on **homog**.)

Party Definition There is a party. All the guests are members of A. Each a-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either

- (a) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has written a paper together, or
- (b) every $\{x_1, \ldots, x_a\} \in (\stackrel{H}{a})$ has NOT written a paper together.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

a=2: ∞ Ramsey Thm for Graphs. Our proof used a=1 case.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

a=2: ∞ Ramsey Thm for Graphs. Our proof used a=1 case.

a=3: These Slides!. We will use a=1 and a=2 cases.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

a=2: ∞ Ramsey Thm for Graphs. Our proof used a=1 case.

a=3: These Slides!. We will use a=1 and a=2 cases.

We do some an example of the first few steps of the construction.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

$$COL(1, 2, 3) = R.$$

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

 $COL(1, 2, 3) = \mathbb{R}.$

COL(1, 2, 4) = B.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

 $COL(1, 2, 3) = \mathbb{R}.$

COL(1, 2, 4) = B.

COL(1, 2, 5) = B.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

 $COL(1, 2, 3) = \mathbb{R}.$

COL(1, 2, 4) = B.

COL(1, 2, 5) = B.

 $\mathrm{COL}(1,3,4) = \mathbf{R}.$

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

 $COL(1, 2, 3) = \mathbb{R}.$

COL(1, 2, 4) = B.

COL(1, 2, 5) = B.

COL(1, 3, 4) = R.

What to make of this?

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

 $COL(1, 2, 3) = \mathbb{R}.$

COL(1, 2, 4) = B.

COL(1, 2, 5) = B.

COL(1, 3, 4) = R.

What to make of this? Discuss.

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL}'\colon inom{\mathbb{N}-\{1\}}{2} o \mathbb{N}$$
 be defined by

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL'}\colon inom{\mathbb{N}-\{1\}}{2} o \mathbb{N}$$
 be defined by

$$COL'(y, z) = COL(1, y, z).$$

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL}' \colon \binom{\mathbb{N} - \{1\}}{2} \to \mathbb{N}$$
 be defined by

$$COL'(y, z) = COL(1, y, z).$$

Apply the a=2 case to get a homog (relative to COL') set H_1 .

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL}' \colon \binom{\mathbb{N} - \{1\}}{2} \to \mathbb{N}$$
 be defined by

$$COL'(y, z) = COL(1, y, z).$$

Apply the a=2 case to get a homog (relative to COL') set H_1 .

We'll say the color is c_1

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL}' \colon \binom{\mathbb{N} - \{1\}}{2} o \mathbb{N}$$
 be defined by

$$COL'(y, z) = COL(1, y, z).$$

Apply the a=2 case to get a homog (relative to COL') set H_1 .

We'll say the color is c_1

For all $y, z \in \mathbb{N} - \{1\}$, $COL(1, y, z) = c_1$.

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL}' \colon \binom{\mathbb{N} - \{1\}}{2} o \mathbb{N}$$
 be defined by

$$COL'(y, z) = COL(1, y, z).$$

Apply the a=2 case to get a homog (relative to COL') set H_1 .

We'll say the color is c_1

For all $y, z \in \mathbb{N} - \{1\}$, $COL(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\mathrm{COL}' \colon \binom{\mathbb{N} - \{1\}}{2} \to \mathbb{N}$$
 be defined by

$$COL'(y, z) = COL(1, y, z).$$

Apply the a=2 case to get a homog (relative to COL') set H_1 .

We'll say the color is c_1

For all
$$y, z \in \mathbb{N} - \{1\}$$
, $COL(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

If $y \notin H_2$ we say that y disagrees.

We are given COL: $\binom{\mathbb{N}}{3} \to [2]$.

Let

$$\mathrm{COL}' \colon \binom{\mathbb{N} - \{1\}}{2} \to \mathbb{N}$$
 be defined by

COL'(y, z) = COL(1, y, z).

Apply the a=2 case to get a homog (relative to COL') set H_1 .

We'll say the color is c_1

For all $y, z \in \mathbb{N} - \{1\}$, $COL(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

If $y \notin H_2$ we say that y disagrees.

Kill all those who disagree!

Construction of $x_1, H_1, c_1, x_2, H_2, c_2$

We now have

Construction of $x_1, H_1, c_1, x_2, H_2, c_2$

We now have $x_1 = 1$.

Construction of $x_1, H_1, c_1, x_2, H_2, c_2$

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 c_1 .

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 c_1 .

 x_2 is the least element of H_1 .

We now have $x_1 = 1$.

$$H_1$$
: for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 c_1 .

 x_2 is the least element of H_1 .

$$\mathrm{COL'}\colon {H_1-\{x_1\}\choose 2} o [2]$$
 is defined by $\mathrm{COL'}(y,z) = \mathrm{COL'}(x_2,y,z)$

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 c_1 .

 x_2 is the least element of H_1 .

 $\mathrm{COL'}\colon inom{H_1-\{x_1\}}{2} o [2]$ is defined by $\mathrm{COL'}(y,z) = \mathrm{COL'}(x_2,y,z)$

 H_2 is the homog set.

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 c_1 .

 x_2 is the least element of H_1 .

 $\mathrm{COL'}\colon {H_1-\{x_1\}\choose 2} o [2]$ is defined by $\mathrm{COL'}(y,z) = \mathrm{COL'}(x_2,y,z)$

 H_2 is the homog set.

 c_2 is the color of the homog set.

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 c_1 .

 x_2 is the least element of H_1 .

 $\mathrm{COL'}\colon {H_1-\{x_1\}\choose 2} \to [2]$ is defined by $\mathrm{COL'}(y,z) = \mathrm{COL'}(x_2,y,z)$

 H_2 is the homog set.

 c_2 is the color of the homog set.

Next Slide is General Case.

Assume we have x_s , H_s , c_s .

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s .

Assume we have x_s , H_s , c_s .

 x_{s+1} is the least element of H_s .

 $\mathrm{COL}' \colon inom{H_1 - \{x_{s+1}\}}{2} \to [2]$ is defined by

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s . COL': $\binom{H_1 - \{x_{s+1}\}}{2} \rightarrow [2]$ is defined by $COL'(y,z) = COL'(x_{x+1},y,z)$

Assume we have x_s , H_s , c_s .

 x_{s+1} is the least element of H_s .

 $\mathrm{COL}' \colon inom{H_1 - \{x_{s+1}\}}{2} \to [2]$ is defined by

$$\mathrm{COL}'(y,z) = \mathrm{COL}'(x_{x+1},y,z)$$

 H_{s+1} is the infinite homog set from COL'.

Assume we have x_s , H_s , c_s .

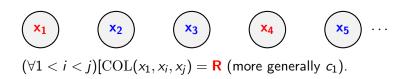
 x_{s+1} is the least element of H_s .

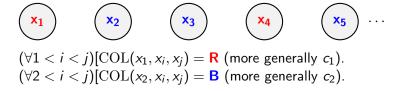
 $\mathrm{COL}' \colon {H_1 - \{x_{s+1}\} \choose 2} \to [2]$ is defined by

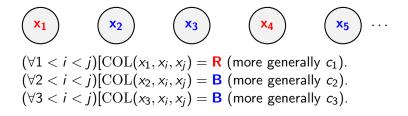
$$\mathrm{COL}'(y,z) = \mathrm{COL}'(x_{x+1},y,z)$$

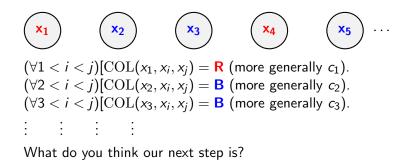
 H_{s+1} is the infinite homog set from COL'.

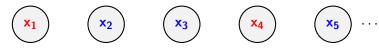
 c_{s+1} is the color of H_{s+1} .









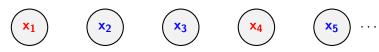


Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$



Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

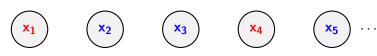
For all i < j < k, $COL(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.)

Some color appears infinitely often, say R.

$$H = \{ y \in X : \mathrm{COL}(y) = \mathbf{R} \}$$

 $\begin{pmatrix} y_1 \end{pmatrix} \qquad \begin{pmatrix} y_2 \end{pmatrix} \qquad \begin{pmatrix} y_3 \end{pmatrix} \qquad \begin{pmatrix} y_4 \end{pmatrix} \qquad \begin{pmatrix} y_5 \end{pmatrix}$

For all i < j < k, $COL(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.) H is clearly a homog set!



Some color appears infinitely often, say R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

For all i < j < k, $COL(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.) H is clearly a homog set! DONE!

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

a=2: ∞ Ramsey Thm for Graphs. Our proof used a=1 case.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

a=2: ∞ Ramsey Thm for Graphs. Our proof used a=1 case.

a=3: These Slides!. We will use a=1 and a=2 cases.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a=1: \forall 2-colorings of $\mathbb N$ some color appears ∞ . The set of $x\in\mathbb N$ of that color is an infinite homog set.

a=2: ∞ Ramsey Thm for Graphs. Our proof used a=1 case.

a=3: These Slides!. We will use a=1 and a=2 cases.

 $a \ge 4$: Might be a HW. Should be easy for you now.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey. That proof did not give any bounds on $R_a(k)$.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey. That proof did not give any bounds on $R_a(k)$.

Next lecture we will give a direct proof of 3-ary Ramsey which gives bounds on $R_3(k)$.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey. That proof did not give any bounds on $R_a(k)$.

Next lecture we will give a direct proof of 3-ary Ramsey which gives bounds on $R_3(k)$.

That proof easily extends to $R_a(k)$.