From Infinite Ramsey To Finite Ramsey

Exposition by William Gasarch

December 7, 2024

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{2}$ is constant. (From now on **homog**.)

Infinite Ramsey Thm

Infinite Ramsey Thm

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

Infinite Ramsey Thm

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

Finite Ramsey Thm

Infinite Ramsey Thm

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

Finite Ramsey Thm

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

Infinite Ramsey Thm

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

Finite Ramsey Thm

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

We have already proven the Infinite Ramsey Thm.

Infinite Ramsey Thm

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

Finite Ramsey Thm

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

We have already proven the Infinite Ramsey Thm.

We will prove The Finite Ramsey from The Infinite Ramsey.

Proof of the Finite Ramsey Thm From The Infinite Ramsey Thm

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

Assume, by way of contradiction, that

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \to [2]$ there exists a homog set of size k.

Assume, by way of contradiction, that

 $(\exists k)(\forall n)(\exists COL: \binom{[n]}{2} \rightarrow [2]$ with no homog set of size k).

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \to [2]$ there exists a homog set of size k.

Assume, by way of contradiction, that

 $(\exists k)(\forall n)(\exists \text{COL} \colon \binom{[n]}{2} \to [2] \text{ with no homog set of size } k).$

Say k = 182. There is a coloring of $\binom{[10^{100}]}{2}$ with no homog set of size 182.

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

Assume, by way of contradiction, that

 $(\exists k)(\forall n)(\exists COL : {[n] \choose 2} \rightarrow [2]$ with no homog set of size k).

Say k=182. There is a coloring of $\binom{[10^{100}]}{2}$ with no homog set of size 182. That seems unlikely.

 $(\exists k)(\forall n)(\exists COL: \binom{[n]}{2} \rightarrow [2]$ with no homog set of size k).

 $(\exists k)(\forall n)(\exists COL : \binom{[n]}{2} \rightarrow [2]$ with no homog set of size k). The following exist

 $(\exists k)(\forall n)(\exists COL: \binom{[n]}{2}) \rightarrow [2]$ with no homog set of size k).

The following exist

 $COL_0: \binom{[k]}{2} \to [2]$ with no homog set of size k.

 $(\exists k)(\forall n)(\exists COL: \binom{[n]}{2} \rightarrow [2]$ with no homog set of size k).

The following exist

 $COL_0: \binom{[k]}{2} \to [2]$ with no homog set of size k.

 $COL_1: {[k+1] \choose 2} \to [2]$ with no homog set of size k.

 $(\exists k)(\forall n)(\exists COL: \binom{[n]}{2} \rightarrow [2]$ with no homog set of size k).

The following exist

 $COL_0: \binom{[k]}{2} \to [2]$ with no homog set of size k.

 $COL_1: {[k+1] \choose 2} \rightarrow [2]$ with no homog set of size k.

 $COL_2: \binom{[k+2]}{2} \to [2]$ with no homog set of size k.

```
(\exists k)(\forall n)(\exists COL: \binom{[n]}{2}) \rightarrow [2] with no homog set of size k). The following exist COL_0: \binom{[k]}{2} \rightarrow [2] with no homog set of size k. COL_1: \binom{[k+1]}{2} \rightarrow [2] with no homog set of size k. COL_2: \binom{[k+2]}{2} \rightarrow [2] with no homog set of size k. \vdots \vdots \vdots
```

```
(\exists \mathbf{k})(\forall \mathbf{n})(\exists \mathrm{COL}: \binom{[\mathbf{n}]}{2}) \to [\mathbf{2}] with no homog set of size k). The following exist COL_0: \binom{[k]}{2} \to [\mathbf{2}] with no homog set of size k. COL_1: \binom{[k+1]}{2} \to [\mathbf{2}] with no homog set of size k. COL_2: \binom{[k+2]}{2} \to [\mathbf{2}] with no homog set of size k. \vdots \vdots COL_L: \binom{[k+L]}{2} \to [\mathbf{2}] with no homog set of size k.
```

```
(\exists k)(\forall n)(\exists COL: \binom{[n]}{2}) \rightarrow [2] with no homog set of size k).
The following exist
COL_0: \binom{[k]}{2} \to [2] with no homog set of size k.
COL_1: \binom{[k+1]}{2} \to [2] with no homog set of size k.
COL_2: \binom{[k+2]}{2} \to [2] with no homog set of size k.
COL_1: \binom{[k+L]}{2} \to [2] with no homog set of size k.
```

```
(\exists k)(\forall n)(\exists COL: \binom{[n]}{2}) \rightarrow [2] with no homog set of size k).
The following exist
COL_0: \binom{[k]}{2} \to [2] with no homog set of size k.
COL_1: \binom{[k+1]}{2} \to [2] with no homog set of size k.
COL_2: \binom{[k+2]}{2} \to [2] with no homog set of size k.
COL_1: \binom{[k+L]}{2} \to [2] with no homog set of size k.
We use COL_0, COL_1, \ldots to form
```

```
(\exists k)(\forall n)(\exists COL: \binom{[n]}{2}) \rightarrow [2] with no homog set of size k).
The following exist
COL_0: \binom{[k]}{2} \to [2] with no homog set of size k.
COL_1: \binom{[k+1]}{2} \to [2] with no homog set of size k.
COL_2: \binom{[k+2]}{2} \to [2] with no homog set of size k.
COL_I: \binom{[k+L]}{2} \to [2] with no homog set of size k.
We use COL_0, COL_1, \ldots to form
COL: \binom{\mathbb{N}}{2} \to [2].
```

```
(\exists k)(\forall n)(\exists COL: \binom{[n]}{2}) \rightarrow [2] with no homog set of size k).
The following exist
COL_0: \binom{[k]}{2} \to [2] with no homog set of size k.
COL_1: \binom{[k+1]}{2} \to [2] with no homog set of size k.
COL_2: \binom{[k+2]}{2} \to [2] with no homog set of size k.
COL_I: \binom{[k+L]}{2} \to [2] with no homog set of size k.
We use COL_0, COL_1, \ldots to form
COL: \binom{\mathbb{N}}{2} \to [2].
```

We will use the inf Ramsey Theory to get a contradiction.

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\mathbb{N}}{2}$.

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\mathbb{N}}{2}$. We will color e_1 , then e_2 , etc.

```
Let e_1, e_2, e_3, \ldots be a list of every element of \binom{\mathbb{N}}{2}. We will color e_1, then e_2, etc. Let e_1 = (1, 2).
```

```
Let e_1, e_2, e_3, \ldots be a list of every element of \binom{\mathbb{N}}{2}. We will color e_1, then e_2, etc.
Let e_1 = (1, 2). How should we color e_1?
```

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\mathbb{N}}{2}$. We will color e_1 , then e_2 , etc. Let $e_1 = (1, 2)$. How should we color e_1 ? Discuss.

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\mathbb{N}}{2}$. We will color e_1 , then e_2 , etc. Let $e_1=(1,2)$. How should we color e_1 ? Discuss. Answer on the next slide

 COL_0 colors (1,2) R

 COL_0 colors (1,2) R COL_1 colors (1,2) B

 COL_0 colors (1,2) R

 COL_1 colors (1,2) B

 COL_2 colors (1,2) B

```
COL_0 colors (1,2) R
```

 COL_1 colors (1,2) B

 COL_2 colors (1,2) B

 COL_3 colors (1,2) $\mbox{\it I\hskip -2pt R}$

```
\begin{array}{l} \mathrm{COL}_0 \ \mathsf{colors} \ (1,2) \ \mathsf{R} \\ \mathrm{COL}_1 \ \mathsf{colors} \ (1,2) \ \mathsf{B} \\ \mathrm{COL}_2 \ \mathsf{colors} \ (1,2) \ \mathsf{B} \\ \mathrm{COL}_3 \ \mathsf{colors} \ (1,2) \ \mathsf{R} \\ \vdots \qquad \vdots \qquad (\mathsf{No} \ \mathsf{pattern} \ \mathsf{implied}) \end{array}
```

```
\mathrm{COL}_0 colors (1,2) R

\mathrm{COL}_1 colors (1,2) B

\mathrm{COL}_2 colors (1,2) B

\mathrm{COL}_3 colors (1,2) R

\vdots (No pattern implied)

In this list either R or B occurs infinitely often.
```

```
COL<sub>0</sub> colors (1,2) {\sf R}

COL<sub>1</sub> colors (1,2) {\sf B}

COL<sub>2</sub> colors (1,2) {\sf B}

COL<sub>3</sub> colors (1,2) {\sf R}

\vdots (No pattern implied)

In this list either {\sf R} or {\sf B} occurs infinitely often.

COL(e_1) = {\sf R} if |\{y\colon {\sf COL}_v(e_1)={\sf R}\}|=\infty, {\sf B} OW.
```

What about e_2 ?

```
COL_0 colors (1,2) R
COL_1 colors (1,2) B
COL_2 colors (1,2) B
COL_3 colors (1,2) R
                     (No pattern implied)
In this list either R or B occurs infinitely often.
COL(e_1) = \mathbb{R} \text{ if } |\{y : COL_v(e_1) = \mathbb{R}\}| = \infty, \mathbb{B} \text{ OW}.
```

What about e_2 ? Discuss.

```
\begin{split} &\operatorname{COL_0} \, \operatorname{colors} \, (1,2) \, \, \textbf{R} \\ &\operatorname{COL_1} \, \operatorname{colors} \, (1,2) \, \, \textbf{B} \\ &\operatorname{COL_2} \, \operatorname{colors} \, (1,2) \, \, \textbf{B} \\ &\operatorname{COL_3} \, \operatorname{colors} \, (1,2) \, \, \textbf{R} \\ & \vdots \qquad \qquad (\text{No pattern implied}) \\ &\operatorname{In this list either} \, \textbf{R} \, \operatorname{or} \, \textbf{B} \, \operatorname{occurs infinitely often}. \\ &\operatorname{COL}(e_1) = \textbf{R} \, \operatorname{if} \, |\{y \colon \operatorname{COL}_y(e_1) = \textbf{R}\}| = \infty, \, \, \textbf{B} \, \operatorname{OW}. \end{split}
```

```
\begin{split} &\operatorname{COL}_0 \; \operatorname{colors} \; (1,2) \; \textbf{R} \\ &\operatorname{COL}_1 \; \operatorname{colors} \; (1,2) \; \textbf{B} \\ &\operatorname{COL}_2 \; \operatorname{colors} \; (1,2) \; \textbf{B} \\ &\operatorname{COL}_3 \; \operatorname{colors} \; (1,2) \; \textbf{R} \\ &\vdots \qquad \vdots \qquad (\text{No pattern implied}) \\ &\operatorname{In this list either} \; \textbf{R} \; \operatorname{or} \; \textbf{B} \; \operatorname{occurs infinitely often}. \\ &\operatorname{COL}(e_1) = \textbf{R} \; \operatorname{if} \; |\{y \colon \operatorname{COL}_y(e_1) = \textbf{R}\}| = \infty, \; \textbf{B} \; \operatorname{OW}. \end{split}
```

What about e_2 ? Discuss. Answer on Next Slide.

You might think:

You might think:

$$\mathrm{COL}(e_2) = \mathbf{R} \text{ if } |\{y \colon \mathrm{COL}_y(e_2) = \mathbf{R}\}| = \infty, \ \mathbf{B} \ \mathsf{OW}.$$

You might think:

$$\mathrm{COL}(e_2) = \mathbf{R} \text{ if } |\{y \colon \mathrm{COL}_y(e_2) = \mathbf{R}\}| = \infty, \ \mathbf{B} \ \mathsf{OW}.$$

No!

You might think:

$$COL(e_2) = \mathbf{R} \text{ if } |\{y : COL_v(e_2) = \mathbf{R}\}| = \infty, \mathbf{B} \text{ OW}.$$

No! (you probably guessed that from my You might think)

You might think:

$$COL(e_2) = \mathbf{R} \text{ if } |\{y : COL_v(e_2) = \mathbf{R}\}| = \infty, \mathbf{B} \text{ OW}.$$

No! (you probably guessed that from my You might think)

We only want to use the COL_y that gave e_1 the correct color.

You might think:

$$COL(e_2) = \mathbf{R} \text{ if } |\{y : COL_y(e_2) = \mathbf{R}\}| = \infty, \mathbf{B} \text{ OW}.$$

No! (you probably guessed that from my You might think)

We only want to use the COL_v that gave e_1 the correct color.

$$COL(e_2) = \mathbf{R}$$
 if

$$|\{y : \mathrm{COL}_y(e_2) = \mathbb{R} \wedge \mathrm{COL}_y(e_1) = \mathrm{COL}(e_1)\}| = \infty, \ \mathbb{B} \ \mathsf{OW}.$$

You might think:

$$COL(e_2) = \mathbf{R} \text{ if } |\{y : COL_y(e_2) = \mathbf{R}\}| = \infty, \mathbf{B} \text{ OW}.$$

No! (you probably guessed that from my You might think)

We only want to use the COL_v that gave e_1 the correct color.

$$COL(e_2) = \mathbf{R}$$
 if

$$|\{y : \mathrm{COL}_y(e_2) = \mathbb{R} \wedge \mathrm{COL}_y(e_1) = \mathrm{COL}(e_1)\}| = \infty, \ \mathbb{B} \ \mathsf{OW}.$$

We do the full COL on the next slide.

 $\mathit{I}_1 = \mathbb{N}$ (I_s will be the COL_y still alive. It will be $\infty.$)

 $I_1 = \mathbb{N}$ (I_s will be the COL_y still alive. It will be ∞ .) $\mathrm{COL}(e_1) = \mathbf{R}$ if $|\{y \in I_1 \colon \mathrm{COL}_y(e_1) = \mathbf{R}\}| = \infty$, **B** OW.

```
I_1=\mathbb{N} (I_s will be the \mathrm{COL}_y still alive. It will be \infty.) \mathrm{COL}(e_1)=\mathbf{R} if |\{y\in I_1\colon \mathrm{COL}_y(e_1)=\mathbf{R}\}|=\infty, B OW. I_2=\{y\in I_1\colon \mathrm{COL}_y(e_1)=\mathrm{COL}(e_1)\}
```

```
I_1 = \mathbb{N} (I_s will be the \mathrm{COL}_y still alive. It will be \infty.) \mathrm{COL}(e_1) = \mathbf{R} if |\{y \in I_1 \colon \mathrm{COL}_y(e_1) = \mathbf{R}\}| = \infty, B OW. I_2 = \{y \in I_1 \colon \mathrm{COL}_y(e_1) = \mathrm{COL}(e_1)\} \mathrm{COL}(e_2) = \mathbf{R} if |\{y \in I_2 \colon \mathrm{COL}_y(e_2) = \mathbf{R}\}| = \infty, B OW.
```

```
I_1=\mathbb{N} (I_s will be the \mathrm{COL}_y still alive. It will be \infty.) \mathrm{COL}(e_1)=\mathbf{R} if |\{y\in I_1\colon \mathrm{COL}_y(e_1)=\mathbf{R}\}|=\infty, \mathbf{B} OW. I_2=\{y\in I_1\colon \mathrm{COL}_y(e_1)=\mathrm{COL}(e_1)\} \mathrm{COL}(e_2)=\mathbf{R} if |\{y\in I_2\colon \mathrm{COL}_y(e_2)=\mathbf{R}\}|=\infty, \mathbf{B} OW. Assume \mathrm{COL}(e_1), ..., \mathrm{COL}(e_s), I_{s+1} are defined.
```

```
I_1 = \mathbb{N} \ (I_s \text{ will be the COL}_y \text{ still alive. It will be } \infty.) \mathrm{COL}(e_1) = \mathbf{R} \text{ if } |\{y \in I_1 \colon \mathrm{COL}_y(e_1) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ OW}. I_2 = \{y \in I_1 \colon \mathrm{COL}_y(e_1) = \mathrm{COL}(e_1)\} \mathrm{COL}(e_2) = \mathbf{R} \text{ if } |\{y \in I_2 \colon \mathrm{COL}_y(e_2) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ OW}. Assume \mathrm{COL}(e_1), \ldots, \mathrm{COL}(e_s), \ I_{s+1} \text{ are defined}. \mathrm{COL}(e_{s+1}) = \mathbf{R} \text{ if } |\{y \in I_{s+1} \colon \mathrm{COL}_y(e_{s+1}) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ OW}.
```

```
I_1 = \mathbb{N} (I_s will be the COL_v still alive. It will be \infty.)
COL(e_1) = \mathbb{R} \text{ if } |\{y \in I_1 : COL_v(e_1) = \mathbb{R}\}| = \infty, \mathbb{B} \text{ OW}.
I_2 = \{ y \in I_1 : COL_v(e_1) = COL(e_1) \}
COL(e_2) = \mathbb{R} if |\{y \in I_2 : COL_v(e_2) = \mathbb{R}\}| = \infty, B OW.
Assume COL(e_1), \ldots, COL(e_s), I_{s+1} are defined.
COL(e_{s+1}) = \mathbb{R} \text{ if } |\{v \in I_{s+1} : COL_v(e_{s+1}) = \mathbb{R}\}| = \infty, \mathbb{B} \text{ OW}.
I_{s+2} = \{ y \in I_{s+1} : COL_v(e_{s+1}) = COL(e_{s+1}) \}
```

Using COL To Get a Contradiction

We have defined $COL: \binom{\mathbb{N}}{2} \to [2]$.

We have defined COL: $\binom{\mathbb{N}}{2} \to [2]$.

By The Infinite Ramsey Thm there exists infinite homog set

$$H = \{x_1 < x_2 < x_3 < x_4 < \cdots \}$$

We have defined COL: $\binom{\mathbb{N}}{2} \to [2]$.

By The Infinite Ramsey Thm there exists infinite homog set

$$H = \{x_1 < x_2 < x_3 < x_4 < \cdots \}$$

Look at COL restricted to $\binom{\{x_1,...,x_k\}}{2}$.

We have defined COL: $\binom{\mathbb{N}}{2} \to [2]$.

By The Infinite Ramsey Thm there exists infinite homog set

$$H = \{x_1 < x_2 < x_3 < x_4 < \cdots \}$$

Look at COL restricted to $\binom{\{x_1,\dots,x_k\}}{2}$.

By the construction there is an L (actually infinitely many L) such that COL and COL_L agree on $\binom{\{x_1,\dots,x_k\}}{2}$.

We have defined $COL: \binom{\mathbb{N}}{2} \to [2]$.

By The Infinite Ramsey Thm there exists infinite homog set

$$H = \{x_1 < x_2 < x_3 < x_4 < \cdots \}$$

Look at COL restricted to $\binom{\{x_1,\dots,x_k\}}{2}$.

By the construction there is an L (actually infinitely many L) such that COL and COL_L agree on $\binom{\{x_1,\dots,x_k\}}{2}$.

Hence there is a homog set of size k for COL_L .

We have defined $COL: \binom{\mathbb{N}}{2} \to [2]$.

By The Infinite Ramsey Thm there exists infinite homog set

$$H = \{x_1 < x_2 < x_3 < x_4 < \cdots \}$$

Look at COL restricted to $\binom{\{x_1,\dots,x_k\}}{2}$.

By the construction there is an L (actually infinitely many L) such that COL and COL_L agree on $\binom{\{x_1,\dots,x_k\}}{2}$.

Hence there is a homog set of size k for COL_L .

This is a contradiction since COL_L has no homog sets of size k.

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

BILL: So we have proven that, for all k, there is an n = R(k).

Thm For all k there exists n = R(k) such that for all $COL: \binom{[n]}{2} \to [2]$ there exists a homog set of size k.

BILL: So we have proven that, for all k, there is an n = R(k).

STUDENT: Great! what is R(10)?

Thm For all k there exists n = R(k) such that for all $COL: \binom{[n]}{2} \to [2]$ there exists a homog set of size k.

BILL: So we have proven that, for all k, there is an n = R(k).

STUDENT: Great! what is R(10)?

BILL: We showed R(10) exists by showing there is SOME n such that for all COL: $\binom{[n]}{2} \to [2]$ there is a homog set of size k.

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

BILL: So we have proven that, for all k, there is an n = R(k).

STUDENT: Great! what is R(10)?

BILL: We showed R(10) exists by showing there is SOME n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there is a homog set of size k.

STUDENT: Surely the proof gives an upper bound on R(10)!

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

BILL: So we have proven that, for all k, there is an n = R(k).

STUDENT: Great! what is R(10)?

BILL: We showed R(10) exists by showing there is SOME n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there is a homog set of size k.

STUDENT: Surely the proof gives an upper bound on R(10)!

BILL: The proof is nonconstructive. And don't call me Shirley.

Thm For all k there exists n = R(k) such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

BILL: So we have proven that, for all k, there is an n = R(k).

STUDENT: Great! what is R(10)?

BILL: We showed R(10) exists by showing there is SOME n such that for all COL: $\binom{[n]}{2} \to [2]$ there is a homog set of size k.

STUDENT: Surely the proof gives an upper bound on R(10)!

BILL: The proof is nonconstructive. And don't call me Shirley.

STUDENT: Dagnabbit! I want a bound on R(10)!

```
Thm For all k there exists n = R(k) such that for all
COL: \binom{[n]}{2} \rightarrow [2] there exists a homog set of size k.
BILL: So we have proven that, for all k, there is an n = R(k).
STUDENT: Great! what is R(10)?
BILL: We showed R(10) exists by showing there is SOME n such
that for all COL: \binom{[n]}{2} \rightarrow [2] there is a homog set of size k.
STUDENT: Surely the proof gives an upper bound on R(10)!
BILL: The proof is nonconstructive. And don't call me Shirley.
STUDENT: Dagnabbit! I want a bound on R(10)!
BILL: You want a bound on the factorial of R(10)?
```

```
Thm For all k there exists n = R(k) such that for all
COL: \binom{[n]}{2} \rightarrow [2] there exists a homog set of size k.
BILL: So we have proven that, for all k, there is an n = R(k).
STUDENT: Great! what is R(10)?
BILL: We showed R(10) exists by showing there is SOME n such
that for all COL: \binom{[n]}{2} \rightarrow [2] there is a homog set of size k.
STUDENT: Surely the proof gives an upper bound on R(10)!
BILL: The proof is nonconstructive. And don't call me Shirley.
STUDENT: Dagnabbit! I want a bound on R(10)!
BILL: You want a bound on the factorial of R(10)?
STUDENT: No you muffinhead, I want a bound on R(10) and I
feel strongly about it!
```

```
Thm For all k there exists n = R(k) such that for all
COL: \binom{[n]}{2} \rightarrow [2] there exists a homog set of size k.
BILL: So we have proven that, for all k, there is an n = R(k).
STUDENT: Great! what is R(10)?
BILL: We showed R(10) exists by showing there is SOME n such
that for all COL: \binom{[n]}{2} \rightarrow [2] there is a homog set of size k.
STUDENT: Surely the proof gives an upper bound on R(10)!
BILL: The proof is nonconstructive. And don't call me Shirley.
STUDENT: Dagnabbit! I want a bound on R(10)!
BILL: You want a bound on the factorial of R(10)?
STUDENT: No you muffinhead, I want a bound on R(10) and I
feel strongly about it!
BILL: Then you shall have it! Next lecture!
```