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A Variant of R(3) = 6

Recall Let G = (V ,E ) = K6.

(*) for all COL :
(V
2

)
→ [2], ∃ mono 4.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K6 as a subgraph works.

Better Questions
Is there a graph G w/o a K6-subgraph such that (*) holds?

Is there a graph G w/o a K5-subgraph such that (*) holds?

Is there a graph G w/o a K4-subgraph such that (*) holds?
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Def Let G = (V ,E ) be a graph. RAM(G , c , k) means that
For all COL : E → [c] there exists a k-homog set.

Convention RAM(G , 2, 3) will be denoted RAM(G ).

We will mostly be studying RAM(G , 2, 3).
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E =
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We mostly do not draw the edges since that would be a mess.

Exercise Show that G does not have K6 as a subgraph.
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COL(3, i) = B

Assume, BWOC, COL(3, 6) = R.
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If COL(2, 6) = R then 2− 3− 6 is R4. So COL(2, 6) = B.
If COL(1, 6) = R then 1− 3− 6 is R4. So COL(1, 6) = B.
So 1− 2− 6 is a B4.
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