Exposition by William Gasarch

December 20, 2024

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Credit Where Credit Was Due

(4日) (個) (主) (主) (主) の(の)

Credit Where Credit Was Due

The questions raised in these slides are due to Paul Erdös.

Credit Where Credit Was Due

The questions raised in these slides are due to Paul Erdös.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Theorem in these slides is due to Ronald Graham.

Recall Let $G = (V, E) = K_6$.

Recall Let
$$G = (V, E) = K_6$$
.
(*) for all COL: $\binom{V}{2} \rightarrow [2], \exists mono \triangle$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Recall Let
$$G = (V, E) = K_6$$
.
(*) for all COL: $\binom{V}{2} \rightarrow [2], \exists \text{ mono } \triangle$.

Question

Recall Let
$$G = (V, E) = K_6$$
.
(*) for all COL: $\binom{V}{2} \rightarrow [2], \exists \text{ mono } \triangle$.

Question Is there some other graph G such that (*) holds.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Recall Let
$$G = (V, E) = K_6$$
.
(*) for all COL: $\binom{V}{2} \rightarrow [2], \exists mono \triangle$.

Question Is there some other graph *G* such that (*) holds. **Stupid Question**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall Let
$$G = (V, E) = K_6$$
.
(*) for all COL: $\binom{V}{2} \rightarrow [2], \exists \text{ mono } \triangle$.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K_6 as a subgraph works.

・ロト・日本・モト・モト・モー うへぐ

Recall Let $G = (V, E) = K_6$. (*) for all COL: $\binom{V}{2} \rightarrow [2], \exists mono \triangle$.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K_6 as a subgraph works. **Better Questions**

ション ふゆ アメビア メロア しょうくしゃ

Recall Let $G = (V, E) = K_6$. (*) for all COL: $\binom{V}{2} \rightarrow [2], \exists \text{ mono } \triangle$.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K_6 as a subgraph works.

Better Questions

Is there a graph G w/o a K_6 -subgraph such that (*) holds?

Recall Let $G = (V, E) = K_6$. (*) for all COL: $\binom{V}{2} \rightarrow [2], \exists \text{ mono } \triangle$.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K_6 as a subgraph works.

Better Questions

Is there a graph G w/o a K_6 -subgraph such that (*) holds? Is there a graph G w/o a K_5 -subgraph such that (*) holds?

Recall Let $G = (V, E) = K_6$. (*) for all COL: $\binom{V}{2} \rightarrow [2], \exists \text{ mono } \triangle$.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K_6 as a subgraph works.

Better Questions

Is there a graph G w/o a K_6 -subgraph such that (*) holds? Is there a graph G w/o a K_5 -subgraph such that (*) holds? Is there a graph G w/o a K_4 -subgraph such that (*) holds?

Terminology

Def Let G = (V, E) be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Terminology

Def Let G = (V, E) be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Convention RAM(G, 2, 3) will be denoted RAM(G).

Terminology

Def Let G = (V, E) be a graph. RAM(G, c, k) means that For all COL: $E \rightarrow [c]$ there exists a k-homog set.

Convention RAM(G, 2, 3) will be denoted RAM(G). We will mostly be studying RAM(G, 2, 3).

Is there a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Is there a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

Vote

Is there a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

Vote

Yes

Is there a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

Vote

Yes No

Is there a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Vote

Yes No Unknown to Science!

Is there a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Vote

Yes No Unknown to Science!

Answer on the next slide.

There a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

There a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Vote on the Size of the Smallest Known G

There a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

There a graph G such that $\operatorname{RAM}(G)$ and K_6 is NOT a subgraph.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Vote on the Size of the Smallest Known G

- \sim 100 vertices.
- $\sim 10^{10}$ vertices.

There a graph G such that RAM(G) and K_6 is NOT a subgraph.

Vote on the Size of the Smallest Known G

- \sim 100 vertices.
- $\sim 10^{10}$ vertices.

 $\sim A(10, 10)$ vertices where A is Ackerman's function.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

There a graph G such that RAM(G) and K_6 is NOT a subgraph.

Vote on the Size of the Smallest Known G

 \sim 100 vertices.

 $\sim 10^{10}$ vertices.

 $\sim A(10, 10)$ vertices where A is Ackerman's function. Answer on next slide.

The Size of G

The smallest known graph has

The Size of G

The smallest known graph has

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

9 vertices!

The Size of G

The smallest known graph has

9 vertices!

It is known that there is no such graph on 8 vertices.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The smallest known graph has

9 vertices!

It is known that there is no such graph on 8 vertices. We show the graph and prove it has property (*).

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Let G = (V, E) be the graph

Let
$$G = (V, E)$$
 be the graph
 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Let
$$G = (V, E)$$
 be the graph
 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $E = {V \choose 2} - \{(3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 3)\}$

Let
$$G = (V, E)$$
 be the graph
 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $E = {V \choose 2} - \{(3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 3)\}$
We mostly do not draw the edges since that would be a mess.

Let
$$G = (V, E)$$
 be the graph
 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $E = {V \choose 2} - \{(3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 3)\}$
We mostly do not draw the edges since that would be a mess.
Exercise Show that G does not have K_6 as a subgraph.

Let
$$G = (V, E)$$
 be the graph
 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $E = {V \choose 2} - \{(3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 3)\}$
We mostly do not draw the edges since that would be a mess.
Exercise Show that G does not have K_6 as a subgraph.
We show RAM(G).

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Let G = (V, E) be the graph $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = {V \choose 2} - \{(3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 3)\}$ We mostly do not draw the edges since that would be a mess. **Exercise** Show that *G* does not have K_6 as a subgraph. We show RAM(*G*).

Assume that $\exists \text{ COL} \colon {\binom{E}{2}} \to [2]$ has no mono triangle.

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\{1,2,3\}$ is a complete graph.

 $\{1, 2, 3\}$ is a complete graph. We assume COL(1, 2) = B, COL(1, 3) = COL(2, 3) = R.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ○豆 ○の≪や

We show that, for all $4 \le i \le 9$, $COL(3, i) = \mathbf{B}$.

・ロト・雪・・雪・・雪・・白・

Assume, BWOC, $COL(3, 6) = \mathbb{R}$.

Assume, BWOC, $COL(3, 6) = \mathbb{R}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

If $COL(2,6) = \mathbb{R}$ then 2 - 3 - 6 is $\mathbb{R} \triangle$. So $COL(2,6) = \mathbb{B}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Assume, BWOC, $COL(3, 6) = \mathbb{R}$. 2 5 6 3 8 9 If $COL(2,6) = \mathbb{R}$ then 2 - 3 - 6 is $\mathbb{R} \triangle$. So $COL(2,6) = \mathbb{B}$.

If $COL(1, 6) = \mathbb{R}$ then 1 - 3 - 6 is $\mathbb{R} \triangle$. So $COL(1, 6) = \mathbb{B}$.

Assume, BWOC, $COL(3, 6) = \mathbb{R}$. 2 5 6 3 8 9 If $COL(2,6) = \mathbb{R}$ then 2 - 3 - 6 is $\mathbb{R} \triangle$. So $COL(2,6) = \mathbb{B}$. If $COL(1,6) = \mathbb{R}$ then 1 - 3 - 6 is $\mathbb{R} \triangle$. So $COL(1,6) = \mathbb{B}$.

So 1 - 2 - 6 is a **B** \triangle .

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ◎ ◆ ●

(4日) (個) (主) (主) (三) の(の)

Recall that (4, 6), (6, 8), (8, 4) are edges of G

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that (4, 6), (6, 8), (8, 4) are edges of G They must all be **R**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A R \triangle

・ロト・雪・・雪・・雪・・白・

A R \triangle

A R \triangle

R \triangle : 4 - 6 - 8.