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Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
2

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
2

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each pair either knows each other or does not know each other.
H ⊆ A is a homog if either
(a) every pair of elements of H knows each other, or
(b) every pair of elements of H does not knows each other.
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The Finite Ramsey Theorem

Thm For all k , there exists n = R(k) such that for all
COL :

([n]
2

)
→ [2] there exists a homog set of size k .

We will show n = 22k−1 suffices; however, we will keep it a n until
we need to see how big it is.

We will, given COL :
([n]
2

)
→ [2], form

I A 22k−1-sized subset X ⊆ [n].

I A 2-coloring of X .

We do some an example of the first few steps of the construction.
My apologies to the math majors who are not used to seeing
examples.
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Examples of The First

Few Steps of

The Construction



First Step of Our Construction

Look at 1 and all of the edges coming out of it:

1 2 3 4 5 · · · n

Either ∃ ≥ n/2 R or ∃n/2 B coming out of 1. We assume R.

If COL(1, y) = R we say that y agrees.
If COL(1, y) 6= R we say that y disagrees.

Kill all those who disagree!
We have a picture of this on the next slide.
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Node 1 Has the Reds

Look at 1 and all of the edges coming out of it:

1 2 3 4 5 · · · n

Assume that 1 has ≥ n/2 R coming out of it.
We kill 2,5, and anyone else who disagrees!

1 3 4 18 73 · · · m

We Omit 1 from future pictures but its Still Alive and Well.
https://www.youtube.com/watch?v=8--jVqaU-G8.

https://www.youtube.com/watch?v=8--jVqaU-G8
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The Next Step

There is a R edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts
no constraint on the colorings between those nodes.
Look at 3 and all of the edges coming out of it.

3 4 18 73 186 · · · m

Either ∃ ≥ n/22 R or ∃ ≥ n/22 B coming from 3. We assume B.

If COL(3, y) = B we say that y agrees.
If COL(3, y) 6= B we say that y disagrees.

Kill all those who disagree!
We have a picture of this on the next slide.
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Node 3 Has The Blues

3 4 18 186 385 · · · m
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Node 1 and Node 3

1 3 4 18 186 385 · · ·

We could keep doing this with node 4, but messy!
Note that at this point nodes 1 and 3 cannot be killed.
We formalize the real construction on the next slides.
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Given COL :
(

[n]
2

)
→ [2] We Form COL′

We said earlier
Either ∃ ≥ n/2 R or ∃ ≥ n/2 B coming out of 1

When we formalize this, we will color node 1 with that color.

We will then kill all nodes who disagree, but, and this is key
After s stages still have n/2s Nodes In Play.
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Formal Construction

H1 = [n]. Note |H1| ≥ n.
x1 = 1
c1 = R if |{y ∈ H1 : COL(x1, y) = R}| ≥ |H1|/2, B OW.

H2 = {x1} ∪ {y ∈ H1 : COL(x1, y) = c1}. Note |H2| ≥ n/2.
x2 = the least element of H2 − {x1}.
c2 = R if |{y ∈ H2 : COL(x2, y) = R}| ≥ |H2, B OW.

Assume Hs , xs , cs are defined.
Hs+1 = {xs} ∪ {y ∈ Hs : COL(xs , y) = cs}. Note |Hs+1| ≥ n/2s .
xs+1 = the least element of Hs+1 − {x1, . . . , xs}.
cs+1 = R if |{y ∈ Hs+1 : COL(xs+1, y) = R}| = |Hs+1|, B OW.

X = {x1, x2, . . .}

But the . . . is NOT infinite. Where to stop? See next slide
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The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1
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All of the edges from x4 to the left are R.

All of the edges from x5 to the left are B.

All of the edges from xs to the left are cs.

What do you think our next step is?
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Some Color Appears k Times

x1 x2 x3 x4 x5 · · · x2k−1

All of the edges from xs to the left are cs.

Some color appears ≥ k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

All of the edges from ys to the left are R.
H is clearly a homog set!
DONE!
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Variants Of
The

Finite Ramsey Theorem



What if There Are c Colors?

We proved
Thm For all k there exists n such that for all COL :

([n]
2

)
→ [c]

there exists a homog set of size ≥ k.

What if we use c colors? Is the following true?

Thm For all c ∈ N, for all k, there exists n such that for all
COL :

([n]
2

)
→ [c] ∃ a homog set of size ≥ k.

This is easy to prove using the same technique we used for the
c = 2 case.
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What About Hypergraphs?

Def

1) A 1-hypergraph is (V ,E ) where E ⊆
(V
1

)
.

2) A 2-hypergraph is (V ,E ) where E ⊆
(V
2

)
. This is just a graph.

3) A 3-hypergraph is (V ,E ) where E ⊆
(V
3

)
.

a) An a-hypergraph is (V ,E ) where E ⊆
(V
a

)
.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

We will define homog sets for colorings of the edges of an
a-hypergraph and prove Finite Ramsey Thm for a-hypergraphs.
In a later lecture.
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Can We Improve our Upper Bounds?

We showed
Thm For all k , R(k) ≤ 22k−1.

In later talks we will do the following:

1. Get better, but still exponential, upper bounds on R(k).

2. Obtain lower bound on R(k).
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