Finite Ramsey Theorem For 3-Hypergraph

Exposition by William Gasarch

December 9, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

(ロト (個) (E) (E) (E) (E) のへの

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

2.
$$[n] = \{1, \ldots, n\}.$$

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either (a) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has written a paper together, or

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either (a) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has written a paper together, or (b) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has NOT written a paper together.

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \to [2])$ there exists an homog set of size k.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k.

a = 1: \forall 2-colorings of [2k - 1] some color appears k times. The set of all x with that color is a homog set of size k.

ション ふゆ アメリア メリア しょうくしゃ

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k.

a = 1: \forall 2-colorings of [2k - 1] some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k.

a = 1: \forall 2-colorings of [2k - 1] some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases. We will show n =

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \to [2])$ there exists an homog set of size k.

a = 1: \forall 2-colorings of [2k - 1] some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases. We will show n = . NO! We will do the proof with n and later see how large we need n to make the proof work.

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k.

a = 1: \forall 2-colorings of [2k - 1] some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases. We will show n = . NO! We will do the proof with n and later see how large we need n to make the proof work.

We do some an example of the first few steps of the construction.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

Since every 3-subset has a color, harder to draw pictures so I won't :-(. Look at all triples that have 1 in them. COL(1, 2, 2) = P

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

 $\mathrm{COL}(1,2,3)=\mathbf{R}.$

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.
Look at all triples that have 1 in them.
COL(1,2,3) = R.
COL(1,2,4) = B.
```

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.
Look at all triples that have 1 in them.
COL(1,2,3) = R.
COL(1,2,4) = B.
COL(1,2,5) = B.
```

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.
Look at all triples that have 1 in them.
COL(1,2,3) = R.
COL(1,2,4) = B.
COL(1,2,5) = B.
COL(1,3,4) = R.
```

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

COL(1,2,3) = R.

COL(1,2,4) = B.

COL(1,2,5) = B.

COL(1,3,4) = R.

:

COL(1, n - 1, n) = R.
```

```
Since every 3-subset has a color, harder to draw pictures so I won't
:-(.
Look at all triples that have 1 in them.
COL(1, 2, 3) = \mathbf{R}.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = \mathbf{R}.
\operatorname{COL}(1, n-1, n) = \mathbf{R}.
What to make of this?
```

ション ふゆ アメリア メリア しょうくしゃ

```
Since every 3-subset has a color, harder to draw pictures so I won't
:-(.
Look at all triples that have 1 in them.
COL(1, 2, 3) = \mathbf{R}.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = \mathbf{R}.
\operatorname{COL}(1, n-1, n) = \mathbf{R}.
What to make of this? Discuss.
```

ション ふゆ アメリア メリア しょうくしゃ

We are given COL: $\binom{[n]}{3} \rightarrow [2]$.

We are given COL: $\binom{[n]}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}': \binom{[n] - \{1\}}{2} \to [2]$$
 be defined by

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We are given COL: $\binom{[n]}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}': ig([n] - \{1\} \ 2 ig) o [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.

Let

$$\operatorname{COL}': \binom{[n]-\{1\}}{2} \to [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$ By a = 2 case get a homog (relative to COL') set H_1 . Key $|H_1| \ge \Omega(\log_2(n)).$

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.

Let

$$\operatorname{COL}': \binom{[n]-\{1\}}{2} \to [2]$$
 be defined by

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$ By a = 2 case get a homog (relative to COL') set H_1 . Key $|H_1| \ge \Omega(\log_2(n)).$ We'll say the color is c_1

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.

Let

$$\operatorname{COL}': \binom{[n]-\{1\}}{2} \to [2]$$
 be defined by

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

By a = 2 case get a homog (relative to COL') set H_1 . Key $|H_1| \ge \Omega(\log_2(n))$.

We'll say the color is c_1

For all $y, z \in H_1$, $COL(1, y, z) = c_1$.

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.

Let

$$\operatorname{COL}': \binom{[n]-\{1\}}{2} \to [2]$$
 be defined by

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

By a = 2 case get a homog (relative to COL') set H_1 . Key $|H_1| \ge \Omega(\log_2(n))$.

We'll say the color is c_1

For all
$$y, z \in H_1$$
, $\operatorname{COL}(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.

Let

$$\operatorname{COL}': \binom{[n]-\{1\}}{2} \to [2]$$
 be defined by

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

By a = 2 case get a homog (relative to COL') set H_1 . Key $|H_1| \ge \Omega(\log_2(n))$.

We'll say the color is c_1

For all
$$y, z \in H_1$$
, $\operatorname{COL}(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

If $y \notin H_1$ we say that y disagrees.

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.

Let

$$\operatorname{COL}': \binom{[n]-\{1\}}{2} \to [2]$$
 be defined by

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

By a = 2 case get a homog (relative to COL') set H_1 . Key $|H_1| \ge \Omega(\log_2(n))$.

We'll say the color is c_1

For all
$$y, z \in H_1$$
, $\operatorname{COL}(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

If $y \notin H_1$ we say that y disagrees.

Kill all those who disagree!

Construction of x_1 , H_1 , c_1 , x_2 , H_2 , c_2

We now have

We now have $x_1 = 1$.

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 x_2 is the least element of H_1 .

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 x_2 is the least element of H_1 . $\operatorname{COL}': \binom{H_1 - \{x_1\}}{2} \to [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 x_2 is the least element of H_1 . $\operatorname{COL}': \binom{H_1 - \{x_1\}}{2} \to [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$ H_2 is the homog set. Key $|H_2| \ge \Omega(\log_2(|H_1|))$.

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 x_2 is the least element of H_1 . $\operatorname{COL}': \binom{H_1 - \{x_1\}}{2} \to [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$ H_2 is the homog set. Key $|H_2| \ge \Omega(\log_2(|H_1|))$. c_2 is the color of the homog set.

ション ふぼう メリン メリン しょうくしゃ

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

 x_2 is the least element of H_1 . $\operatorname{COL}': \binom{H_1 - \{x_1\}}{2} \to [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$ H_2 is the homog set. Key $|H_2| \ge \Omega(\log_2(|H_1|))$. c_2 is the color of the homog set. Next Slide is General Case.

Assume we have x_s , H_s , c_s .

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s . $\operatorname{COL}': \binom{H_1 - \{x_{s+1}\}}{2} \to [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_{x+1}, y, z)$

ション ふゆ アメリア メリア しょうくしゃ

Assume we have x_s , H_s , c_s .

 x_{s+1} is the least element of H_s . $\operatorname{COL}': \binom{H_1 - \{x_{s+1}\}}{2} \rightarrow [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_{x+1}, y, z)$

 H_{s+1} is the homog set from COL'. Key $|H_{s+1}| \ge \Omega(|H_s|)$.

ション ふぼう メリン メリン しょうくしゃ

Assume we have x_s , H_s , c_s .

 $\begin{array}{l} x_{s+1} \text{ is the least element of } H_s.\\ \mathrm{COL}'\colon \binom{H_1-\{x_{s+1}\}}{2} \to [2] \text{ is defined by}\\ \mathrm{COL}'(y,z) = \mathrm{COL}'(x_{x+1},y,z)\\ H_{s+1} \text{ is the homog set from COL}'. \ \, \mathsf{Key} \ |H_{s+1}| \geq \Omega(|H_s|).\\ c_{s+1} \text{ is the color of } H_{s+1}. \end{array}$

ション ふゆ アメリア メリア しょうくしゃ

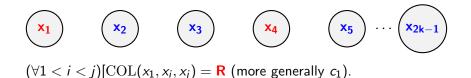
Assume we have x_s , H_s , c_s .

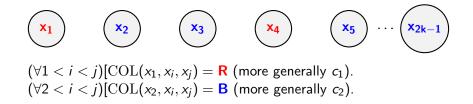
 $\begin{array}{l} x_{s+1} \text{ is the least element of } H_s. \\ \mathrm{COL}' \colon \binom{H_1 - \{x_{s+1}\}}{2} \to [2] \text{ is defined by} \\ \mathrm{COL}'(y,z) = \mathrm{COL}'(x_{x+1},y,z) \\ H_{s+1} \text{ is the homog set from COL}'. \ \, \mathsf{Key} \ |H_{s+1}| \geq \Omega(|H_s|). \\ c_{s+1} \text{ is the color of } H_{s+1}. \end{array}$

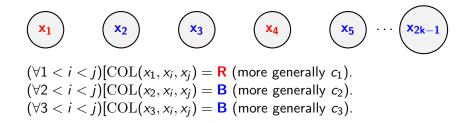
ション ふゆ アメリア メリア しょうくしゃ

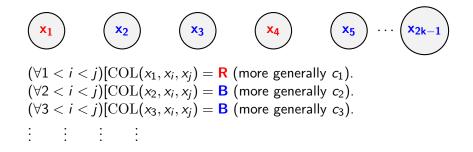
Iterate this process 2k - 1 times.

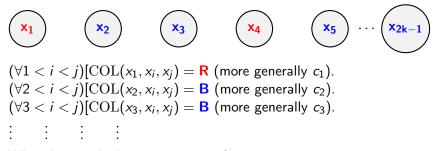
▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの











◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

What do you think our next step is?

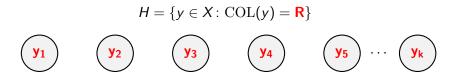
▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

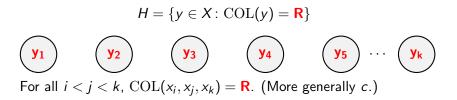
Some color appears infinitely often, say R.

$$H = \{y \in X : \operatorname{COL}(y) = \mathsf{R}\}$$

Some color appears infinitely often, say R.



Some color appears infinitely often, say R.



Some color appears infinitely often, say R.

$$H = \{y \in X : \operatorname{COL}(y) = \mathbb{R}\}$$
For all $i < j < k$, $\operatorname{COL}(x_i, x_j, x_k) = \mathbb{R}$. (More generally c .)
H is clearly a homog set!

Some color appears infinitely often, say R.

$$H = \{y \in X : COL(y) = \mathbb{R}\}$$

For all $i < j < k$, $COL(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.)
 H is clearly a homog set!
DONE!-

Some color appears infinitely often, say R.

$$H = \{y \in X : COL(y) = \mathbb{R}\}$$

For all $i < j < k$, $COL(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.)
 H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be?

Some color appears infinitely often, say R.

$$H = \{y \in X : COL(y) = \mathbb{R}\}$$

For all $i < j < k$, $COL(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.)
 H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

We will assume $|H_{s+1}| \ge \lg(|H_s|.$

We will assume $|H_{s+1}| \ge \lg(|H_s|.$ $|H_1| \ge \lg(n).$


```
We will assume |H_{s+1}| \ge \lg(|H_s|).
|H_1| \ge \lg(n).
|H_2| \ge \lg\lg(n).
```

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

```
We will assume |H_{s+1}| \ge \lg(|H_s|).
|H_1| \ge \lg(n).
|H_2| \ge \lg \lg(n).
\vdots \vdots
```

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

```
We will assume |H_{s+1}| \ge \lg(|H_s|).

|H_1| \ge \lg(n).

|H_2| \ge \lg \lg(n).

\vdots \vdots

|H_{2k-1}| \ge \lg^{(2k-1)}(n).
```

```
We will assume |H_{s+1}| \ge \lg(|H_s|.

|H_1| \ge \lg(n).

|H_2| \ge \lg \lg(n).

\vdots \vdots

|H_{2k-1}| \ge \lg^{(2k-1)}(n).

We need

|H_{2k-1}| \ge \lg^{(2k-1)}(n) \ge 1.
```

```
We will assume |H_{s+1}| \ge \lg(|H_s|.

|H_1| \ge \lg(n).

|H_2| \ge \lg \lg(n).

\vdots \qquad \vdots

|H_{2k-1}| \ge \lg^{(2k-1)}(n).

We need

|H_{2k-1}| \ge \lg^{(2k-1)}(n) \ge 1.

n \ge TOW_2(2k-1).
```

```
We will assume |H_{s+1}| \ge \lg(|H_s|).

|H_1| \ge \lg(n).

|H_2| \ge \lg \lg(n).

\vdots \vdots

|H_{2k-1}| \ge \lg^{(2k-1)}(n).

We need

|H_{2k-1}| \ge \lg^{(2k-1)}(n) \ge 1.

n \ge TOW_2(2k-1).

What about 5-Hypergraph Ramsey?
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
We will assume |H_{s+1}| \ge \lg(|H_s|).
|H_1| \geq \lg(n).
|H_2| \geq \lg \lg(n).
: :
|H_{2k-1}| \ge \lg^{(2k-1)}(n).
We need
|H_{2k-1}| > \lg^{(2k-1)}(n) > 1.
n \geq TOW_2(2k-1).
What about 5-Hypergraph Ramsey?
Are there better bounds?
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Review

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Review

- **1-ary Ramsey** $R_1(k) = 2k 1$.
- 2-ary Ramsey

Review

- **1-ary Ramsey** $R_1(k) = 2k 1$.
- **2-ary Ramsey** 1-ary 2k 1 times, each time halving

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once,

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once,

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}.

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once,

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once, $R_4(k) \leq$

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once, $R_4(k) \leq$ WE LACK THE WORDS

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once, $R_4(k) \leq$ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once, $R_4(k) \leq$ WE LACK THE WORDS

Next Slide Packet gives the Words We Need. Spoiler Alert

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once, $R_4(k) \leq$ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on $R_4(k)$ is **WOWER**

Review

1-ary Ramsey $R_1(k) = 2k - 1$.

2-ary Ramsey 1-ary 2k - 1 times, each time halving Then 1-ary once, $R_2(k) \le 2^{2k-1}$.

3-ary Ramsey 2-ary 2k - 1 times, each time logging Then 1-ary once, $R_3(k) \leq$ inverse of $\log^{(2k-1)}$ so TOWER.

4-ary Ramsey 3-ary 2k - 1 times, each time log^{*}. Then 1-ary once, $R_4(k) \leq$ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on $R_4(k)$ is **WOWER** Beyond that the functions have no name.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. Our proof yields $n \leq TOW_2(2k-1)$.

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. Our proof yields $n \leq TOW_2(2k-1)$. Vote

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. Our proof yields $n \leq TOW_2(2k-1)$. Vote

1) Bound is roughly optimal.

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. Our proof yields $n \leq TOW_2(2k-1)$. Vote

1) Bound is roughly optimal.

2) Bound can be improved to some constant stack of 2's (e.g., $2^{2^{2^{k-1}}}$).

ション ふゆ アメリア メリア しょうくしゃ

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. Our proof yields $n \leq TOW_2(2k-1)$. Vote

1) Bound is roughly optimal.

2) Bound can be improved to some constant stack of 2's (e.g., $2^{2^{2^{k-1}}}$).

3) The question of improving the bound is Unknown to Science.

Thm $(\forall a)(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. Our proof yields $n \leq TOW_2(2k-1)$. Vote

1) Bound is roughly optimal.

2) Bound can be improved to some constant stack of 2's (e.g., $2^{2^{2^{k-1}}}$).

3) The question of improving the bound is Unknown to Science.

Answer on the next slide.

・ロト・日本・モト・モー・ ヨー やくぐ

Erdös and Rado (1952) showed $R_3(k) \leq 2^{2^{4k}}$.

Erdös and Rado (1952) showed $R_3(k) \leq 2^{2^{4k}}$.

We will present this proof later in the course.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Erdös and Rado (1952) showed $R_3(k) \leq 2^{2^{4k}}$.

We will present this proof later in the course.

Conlon, Fox, and, Sudakov (2010) showed $R_3(k) \leq 2^{2^{2k}}$.

Erdös and Rado (1952) showed $R_3(k) \le 2^{2^{4k}}$.

We will present this proof later in the course.

Conlon, Fox, and, Sudakov (2010) showed $R_3(k) \leq 2^{2^{2k}}$.

Is is known that $R_3(k) \ge 2^{k/2}$.

Erdös and Rado (1952) showed $R_3(k) \leq 2^{2^{4k}}$.

We will present this proof later in the course.

Conlon, Fox, and, Sudakov (2010) showed $R_3(k) \leq 2^{2^{2k}}$.

Is is known that $R_3(k) \ge 2^{k/2}$.

Conjecture There is no value of c such that $R_3(k) \leq 2^{ck}$.