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Ramsey Theory VS Euclidean Ramsey Theory

Examples of Ramsey Theory:
1) (∀k)(∃n)[∀COL :

([n]
2

)
→ [2] ∃ a 3-homog set].

2) (∀k)(∃n)[∀COL : [n]→ [2] ∃ a mono k-AP].

3) (∃n)[∀COL : [n]× [n]→ [2] ∃ mono square].

Note that
A) The objects we are coloring are discrete.
In Euclidean Ramsey Theory we will be coloring the Plane or Rd .

B) We do not care about the geometric size. For example, the
Square can be any size.
In Euclidean Ramsey Theory we will be seek an object of a certain
size, for example the unit square.
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For All 2-Colorings of the Plane. . .

Thm ∀ COL : R2 → [2] ∃ 2 points, same color, 1 inch apart.

Discuss Try to proof it, what are your thoughts.

Proof on the next page.
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Chromatic Number of the Plane

Consider the graph G = (V ,E ) where

V = R2

E = {(x , y) : d(x , y) = 1}.
Def χ is the chromatic number of this graph.

The Theorem
Thm ∀ COL : R2 → [2] ∃ 2 points, same color, 1 inch apart.
Can be rephrased as
Thm χ ≥ 3.

We investigate what χ can be.
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What about 3-Colorings of The Plane?

Vote

1) ∀ COL : R2 → [3] ∃ 2 points, same color, 1 inch apart.
(So χ ≤ 4)

2) ∃ COL : R2 → [3] no 2 points, same color, 1 inch apart.
(So χ = 3.)

3) Unknown to Science!
Answer on next slide
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For All 3-Colorings of The Plane. . .

Assume COL is a proper 3-coloring of the plane.
Glue together two unit equilateral triangles:
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1

COL(1) = R, so COL(2) 6= R and COL(3) 6= R.
COL(2) 6= COL(3) so COL(2) = B and COL(3) = G.
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Hence COL(4) = R.
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1 4
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Distance from 1 to 4 is
√
3.

Upshot 1 If p, q are
√
3 apart then COL(p) = COL(q).

Upshot 2 If COL(p) = R then circle of radius
√
3 around p is R.
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Alternative Proof: The Moser Spindle

Recall The proof that χ ≥ 2 is to restrict the coloring to a 3-point
set, the equilateral triangle.

Is there a finite subset of the plane that shows χ ≥ 3? Yes.
In the following 7-vertex unit graph, called The Moser Spindle,
all edges are of length 1. It is an easy exercise to show that this
graph is not 3-colorable.
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What about 4-Colorings of The Plane?

Vote

1) ∀ COL : R2 → [4] ∃ 2 points, same color, 1 inch apart.
(So χ ≥ 5.)

2) ∃ COL : R2 → [4] no 2 points, same color, 1 inch apart.
(So χ = 5.)

3) Unknown to Science!

Answer on next slide
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For All 4-Colorings of The Plane. . .

Thm (Aubrey de Grey, 2018)
∀ COL : R2 → [3] ∃ 2 points, same color, 1 inch apart.
(So χ ≥ 5.)

de Grey did this with a construction of a 1581-vertex unit-distance
graph that is not 4-colorable.

As of 2021 this was gotten down to a 509-vertex graph.

So we know that χ ≥ 5.
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1) ∀ COL : R2 → [5] ∃ 2 points, same color, 1 inch apart.
(So χ ≥ 6.)

2) ∃ COL : R2 → [4] no 2 points, same color, 1 inch apart.
(So χ = 6.)

3) Unknown to Science!
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Upper bound on χ

Thm χ ≤ 7.

There is a 7-coloring of the plane, so 5 ≤ χ ≤ 7.

Here is the 7-coloring:
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