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Probabilistic Method
Proof For Distinct Diff

Sets

Exposition by William Gasarch



The Prob Method

Recall that we showed R(k) ≥ 1
e
√
2
k2k/2

by the following thought experiment.

1) Take a complete graph on n = 1
e
√
2
k2k/2 vertices (round up).

2) ∀{x , y} ∈
([n]
2

)
color {x , y} by flipping a fair coin.

3) Calc the Prob of a k-homog set. Find Prob < 1.

4) Hence a coloring that has no homog set of size k must exist.

Note

1) The proof is nonconstructive. It does not give the coloring. It
just shows that such a coloring exists.

2) This method is very powerful and is used a lot.

3) We will use it to prove that there are large distinct diff sets.
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DISTINCT DIFF SETS

Exposition by William Gasarch



Distinct Diff Sets

Given n try to find a set A ⊆ {1, . . . , n} such that ALL of the
differences of elements of A are DISTINCT.

{1, 2, 22, . . . , 2blog2 nc} ∼ log2 n elements

Can we do better?
STUDENTS break into small groups and try to either do better
OR show that you best you can do is O(log n).
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An Approach

Let a be a number to be determined.

Pick a RANDOM A ⊆ {1, . . . , n} of size a.

What is the probability that all of the diffs in A are distinct?

We hope the prob is strictly GREATER THAN 0.

KEY: If the prob is strictly greater than 0 then there must be
SOME set of a elements where all of the diffs are distinct.
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Determining the Prob

If you pick a RANDOM A ⊆ {1, . . . , n} of size a what is the
probability that all of the diffs in A are distinct?

WRONG QUESTION!

If you pick a RANDOM A ⊆ {1, . . . , n} of size a what is the
probability that all of the diffs in A are NOT distinct?

We hope the Prob is strictly LESS THAN 1.
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Review a Little Bit of Combinatorics

The number of ways to CHOOSE y elements out of x elements is(
x

y

)
=

x!

y !(x − y)!
.



Determining the Prob I

If a RAND A ⊆ {1, . . . , n}, size a, want bound on prob all of the
diffs in A are NOT distinct. Numb of ways to choose a elements
out of {1, . . . , n} is

(n
a

)
.

Two ways to create a set with a diff repeated:
Way One:

I Pick x < y . There are
(n
2

)
≤ n2 ways to do that.

I Pick diff d such that x + d 6= y , x + d ≤ n, y + d ≤ n. Can
do ≤ n ways. Put x , y , x + d , y + d into A.

I Pick a− 4 more elements out of the n − 4 left.

Number of ways to do this is ≤ n3 ×
(n−4
a−4

)
.

Way Two: Pick x < y . Let d = y − x (so we do NOT pick d).
Put x , y = x + d , y + d into A. Pick a− 3 more elements out of
the n − 3 left.
Number of ways to do this is ≤ n2 ×

(n−3
a−3

)
.
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Determining the Prob II

If you pick a RANDOM A ⊆ {1, . . . , n} of size a then a bound on
the probability that all of the diffs in A are NOT distinct is

n3 ×
(n−4
a−4

)
+ n2 ×

(n−3
a−3

)(n
a

) =
n3 ×

(n−4
a−4

)(n
a

) +
n2 ×

(n−3
a−3

)(n
a

)

=
n3a(a− 1)(a− 2)(a− 3)

n(n − 1)(n − 2)(n − 3)
+

n2a(a− 1)(a− 2)

n(n − 1)(n − 2)

≤ 32a4

n
Need some Elem Algebra and uses n ≥ 5.
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ANSWER

RECAP: If pick a RANDOM A ⊆ {1, . . . , n} then the prob that

there IS a repeated difference is ≤ 32a4

n .

So WANT

32a4

n
< 1

Take

a =

(
n

33

)1/4

.

UPSHOT: For all n ≥ 5 there exists a all-diff-distinct subset of
{1, . . . , n} of size roughly n1/4.
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GENERAL UPSHOT

We proved an object existed by showing that the Prob that it
exists is nonzero!.

Is the proof constructive?

I Old view: proof is nonconstructive since it does not say how
to obtain the object.

I New view: proof is constructive since can DO the random
experiment and will probably get what you want.

I Caveat: Evan Golub’s PhD thesis took some prob
constructions and showed how to make them really work. I
was his advisor.

I Caveat: If the Prob Proof has high prob of getting the object,
then seems constructive. If all you prove is nonzero, than
maybe not.
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Actually Can Do Better

I With a maximal set argument can do Ω(n1/3).

I Better is known: Ω(n1/2) which is optimal.
(That is a result by Kolmos-Sulyok-Szemeredi from 1975)


