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When Do You Get A Mono C4?

Thm For all COL :
([18]

2

)
→ [2] there exists a mono C4.

Pf:
Let COL :

([18]
2

)
→ [2].

Since R(4) = 18 there is a mono K4, hence a mono C4.
End of Pf

R(C4) is the least n such that ∀ COL :
([n]
2

)
→ [2] ∃ mono C4.

We have shown R(C4) ≤ 18.
Vote
1) R(C4) = 18.
2) 10 ≤ R(C4) ≤ 17.
3) 5 ≤ R(C4) ≤ 9.
Answer on the next page.
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R(C4) = 6

Thm R(C4) = 6.

First Need R(C4) ≥ 6.
We present a COL :

([5]
2

)
→ [2] with no mono C4.

0

1

23

4

Note: There is a mono C5 but not a mono C4.
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R(C4) = 6

Second Need R(C4) ≤ 6.

We show that ∀ COL :
([6]
2

)
→ [2] ∃ mono C4.

Let COL :
([6]
2

)
→ [2].

We know that there is a mono triangle.
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First Step

∃ a mono triangle. We assume R and on vertices {1, 2, 3}.

1

2

3

4 5 6

We view {1, 2, 3} and {4, 5, 6} as the sides of a bipartite graph.
degR(1) will mean the number of R edges between 1 and {4, 5, 6}.
degR(4) will mean the number of R edges between 4 and {1, 2, 3}.
Generalize to degR(v) and degB(v).
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R Degree of 4, 5, 6

If ∃v ∈ {4, 5, 6}, degR(v) ≥ 2 then get C4:

1

2

3

4 5 6

C4: 4− 1− 3− 2− 4.

Note: (∀v ∈ {4, 5, 6})[degB(v) ≥ 2].
We will show that for (∀v ∈ {4, 5, 6})[degB(v) = 2].
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B Degree of 4, 5, 6

If (∃v ∈ {4, 5, 6})[degB(v) = 3] then get C4:

1

2

3

4 5 6

Recall that degB(5) ≥ 2.
If COL(5, 1) = COL(5, 2) = B then C4: 5− 1− 4− 2− 5.
If COL(5, 2) = COL(5, 3) = B then C4: 5− 3− 4− 2− 5.
If COL(5, 1) = COL(5, 3) = B then C4: 5− 1− 4− 3− 5.
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For v ∈ {4, 5, 6}, degR(v) = 1 and degB(v) = 2.

We now look at the degrees of 1, 2, 3.
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For v ∈ {1, 2, 3}, degR(v) = 1

If ∃v ∈ {1, 2, 3} degR(v) ≥ 2 then C4 or C4.

1

2

3

4 5 6

If COL(1, 4) = R then C4: 1− 4− 2− 3− 1.
If COL(3, 6) = R then C4: 3− 6− 2− 1− 3.
If COL(3, 4) = R then C4: 3− 4− 2− 1− 3.
If COL(1, 6) = R then C4: 1− 6− 2− 3− 1.
If all of those edges are B then C4: 1− 4− 3− 6− 1.
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If COL(3, 4) = R then C4: 3− 4− 2− 1− 3.
If COL(1, 6) = R then C4: 1− 6− 2− 3− 1.
If all of those edges are B then C4: 1− 4− 3− 6− 1.



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].
I Hence we can assume

I COL(1, 4) = COL(2, 5) = COL(4, 6) = R
I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will

find some other edges that must be B.)



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].
I Hence we can assume

I COL(1, 4) = COL(2, 5) = COL(4, 6) = R
I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will

find some other edges that must be B.)



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].
I Hence we can assume

I COL(1, 4) = COL(2, 5) = COL(4, 6) = R
I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will

find some other edges that must be B.)



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].

I Hence we can assume
I COL(1, 4) = COL(2, 5) = COL(4, 6) = R
I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will

find some other edges that must be B.)



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].
I Hence we can assume

I COL(1, 4) = COL(2, 5) = COL(4, 6) = R
I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will

find some other edges that must be B.)



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].
I Hence we can assume

I COL(1, 4) = COL(2, 5) = COL(4, 6) = R

I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will
find some other edges that must be B.)



Red Degree Recap

We have

I (∀v ∈ {1, 2, 3}[degR(v) = 1].

I (∀v ∈ {4, 5, 6}[degR(v) = 1].
I Hence we can assume

I COL(1, 4) = COL(2, 5) = COL(4, 6) = R
I All other edges between {1, 2, 3} and {4, 5, 6} are B. (We will

find some other edges that must be B.)



What We Know: R

1

2

3

4 5 6

All edges between {1, 2, 3} and {4, 5, 6} not shown are B.

Clearly COL(4, 5) = COL(5, 6) = B.
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What We Know: B

1 2 3

4 5 6

C4: 2− 4− 5− 6− 2.

DONE!
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