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When Do You Get A Mono C;?

Thm For all COL: ([128]) — [2] there exists a mono (4.
Pf:

Let COL: (%)) — [2].

Since R(4) = 18 there is a mono K4, hence a mono C.
End of Pf

R(Cs) is the least n such that V COL: (1) — [2] 3 mono G,.
We have shown R((4) < 18.

Vote

1) R(G) = 18.

2) 10 < R(Gy) < 17.

3) 5 < R(G) <0.

Answer on the next page.
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Thm R(Cs) = 6.
First Need R(Cy) > 6.
We present a COL: ([;]) — [2] with no mono G;.

Note: There is a mono (s but not a mono (4.
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R(Cy) =6

Second Need R((s) < 6.
We show that ¥ COL: (&) = [2] 3 mono G,.

Let COL: (1) — [2].
We know that there is a mono triangle.
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First Step

3 a mono triangle. We assume R and on vertices {1, 2, 3}.

(&) O, O,

1 3

We view {1,2,3} and {4,5,6} as the sides of a bipartite graph.
deggr(1) will mean the number of R edges between 1 and {4,5,6}.
degr(4) will mean the number of R edges between 4 and {1,2,3}.
Generalize to degg(v) and degg(v).
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R Degree of 4,5,6

If 3v € {4,5,6}, deggr(v) > 2 then get Cy:

(©)

Cp:4-1-3-2-4

Note: (Vv € {4,5,6})[degg(v) > 2].
We will show that for (Vv € {4,5,6})[degg(v) = 2].



B Degree of 4,5,6



B Degree of 4,5,6

If (3v € {4,5,6})[degg(v) = 3] then get Cy:



B Degree of 4,5,6

If (3v € {4,5,6})[degg(v) = 3] then get Cy:

©




B Degree of 4,5,6

If (3v € {4,5,6})[degg(v) = 3] then get Cy:

©

Recall that degg(5) > 2.



B Degree of 4,5,6

If (3v € {4,5,6})[degg(v) = 3] then get Cy:

©

Recall that degg(5) > 2.
If COL(5,1) = COL(5,2) = B then C4: 5—1—4—2—5.



B Degree of 4,5,6

If (3v € {4,5,6})[degg(v) = 3] then get Cy:

©

Recall that degg(5) > 2.
If COL(5,1) = COL(5,2) = B then C4: 5—1—4—2—5.
If COL(5,2) = COL(5,3) =B then (4: 5—-3—-4—-2—-5.



B Degree of 4,5,6

If (3v € {4,5,6})[degg(v) = 3] then get Cy:

©

Recall that degg(5) > 2.

If COL(5,1) = COL(5,2) = B then C4: 5—1—4—2 5.
If COL(5,2) = COL(5,3) =B then C4: 5—-3—-4—-2 -5,
If COL(5,1) = COL(5,3) =B then (4: 5—1—4—-3—5.
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O, O ©

1 3

For v € {4,5,6}, degr(v) =1 and degg(v) = 2.
We now look at the degrees of 1,2, 3.
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For v € {1,2,3}, degg(v) =1

If 3v € {1,2,3} degr(v) > 2 then C4 or C4.

If COL(1,4) =R then C4: 1-4—-2-3—-1.
If COL(3,6) = R then C4: 3—6—-2—1—3.
If COL(3,4) = R then C4: 3—4—-2—-1-3.
If COL(1,6) = R then C4: 1 —6—2—3—1.

If all of those edges are B then C4: 1 —4—-3—-6—1.
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Red Degree Recap

We have
> (¥ € {1,2,3}[degg(v) = 1].
> (Y € {4,5,6}[degg(v) = 1].
» Hence we can assume
> COL(1,4) = COL(2,5) = COL(4,6) =R
> All other edges between {1,2,3} and {4,5,6} are B. (We will
find some other edges that must be B.)
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1 3

All edges between {1,2,3} and {4,5,6} not shown are B.
Clearly COL(4,5) = COL(5,6) = B.
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What We Know: B

4 (5)

Cp:2—-4-5-6-2.
DONE!



