One Triangle, Two Triangles

William Gasarch

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Lets Party Like Its 2019

The following is the first theorem in Ramsey Theory:

Lets Party Like Its 2019

The following is the first theorem in Ramsey Theory: Thm For all 2-col of the edges of K_6 there is a mono K_3 .

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12,

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$,

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$.

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$. **Answer** n = 6.

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$. **Answer** n = 6.

1. For all 2-col of the edges of K_6 there are 2 mono K_3 's

Thm For all 2-cols of edges of K_{12} there are 2 mono K_3 's **Question** Find *n* such that

- 1. For all 2-col of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1)
$$n = 12$$
, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$.
Answer $n = 6$.

- 1. For all 2-col of the edges of K_6 there are 2 mono K_3 's
- 2. There exists a 2-col of the edges of K_5 that does not have any mono K_3 's.

Proof of K_6 Two Triangles Theorem

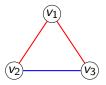
Thm For all 2-cols of edges of K_6 there are 2 mono K_3 's **Proof** Let *COL* be a 2-col of the edges of K_6 . Let *R*, *B*, *M*, be the SET of **RED**, **BLUE**, and **MIXED** triangles.

$$|R| + |B| + |M| = \binom{6}{3} = 20.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We show that $|M| \le 18$, so $|R| + |B| \ge 2$.

A Mixed Triangle Has a Vertex Such That



(v₂, v₁) is red, (v₂, v₃) is blue. View this as (v₂, {v₁, v₃}).
 (v₃, v₁) is red, (v₃, v₂) is blue. View this as (v₃, {v₁, v₂}).

Def A **Zan** is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

ション ふゆ アメリア メリア しょうくしゃ

Def A Zan is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's. Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$.

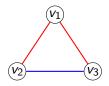
ション ふゆ アメリア メリア しょうくしゃ

Def A **Zan** is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

ション ふぼう メリン メリン しょうくしゃ

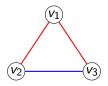
Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$. Claim This mapping is exactly 2-to-1.

Def A Zan is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's. Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$. **Claim** This mapping is exactly 2-to-1. What Zan's map to the triangle:



▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Def A Zan is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's. Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$. **Claim** This mapping is exactly 2-to-1. What Zan's map to the triangle:



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $(v_2, \{v_1, v_3\})$ and $(v_3, \{v_1, v_2\})$.

There is a 2-to-1 map from ZAN to M. Hence

|M| = |ZAN|/2

*ロト *昼 * * ミ * ミ * ミ * のへぐ

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Now we want to bound |ZAN|.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point?

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

 $\{v, \{x, y\}\}$

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

$$\{v, \{x, y\}\}$$

x: COL(v, x) = RED. There are $\deg_R(v)$ of them.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

$$\{v, \{x, y\}\}$$

x: COL(v, x) = RED. There are $\deg_R(v)$ of them. y: COL(v, y) = BLUE. There are $\deg_B(v)$ of them.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| = |ZAN|/2$$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

$\{v, \{x, y\}\}$

x: COL(v, x) = RED. There are $\deg_R(v)$ of them. y: COL(v, y) = BLUE. There are $\deg_B(v)$ of them. So v contributes $\deg_R(v) \times \deg_B(v)$.

Cases

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

Cases

1. v has $\deg_{R}(v) = 5$ or $\deg_{B}(v) = 0$: v contributes 0.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has $\deg_{R}(v) = 4$ or $\deg_{B}(v) = 1$: v contributes 4.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

6 vertices, each contribute \leq 6,

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

6 vertices, each contribute \leq 6, so

$$|M| = |ZAN|/2 \le 6 \times 6/2 = 18$$
, so

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.
 6 vertices, each contribute < 6, so

$$|M| = |ZAN|/2 \le 6 \times 6/2 = 18$$
, so

$$|R| + |B| \ge 20 - |M| \ge 2$$

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Map ZAN to M. Map is 2-to-1, so |M| = |ZAN|/2.

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to M. Map is 2-to-1, so |M| = |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to M. Map is 2-to-1, so |M| = |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

|M| = |ZAN|/2 = 18.

Summary

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to M. Map is 2-to-1, so |M| = |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$|M| = |ZAN|/2 = 18.$$

 $|R| + |B| \ge 20 - |M| \ge 2.$

Summary

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to M. Map is 2-to-1, so |M| = |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$|M| = |ZAN|/2 = 18.$$

 $|R| + |B| \ge 20 - |M| \ge 2.$

So there are at least 2 Mono Triangles.

If we 2-color the edges of K_n how many mono K_3 's do we have?

If we 2-color the edges of K_n how many mono K_3 's do we have? **VOTE** (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If we 2-color the edges of K_n how many mono K_3 's do we have? **VOTE** (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . **Answer**~ n^3 . Actually $\frac{n^3}{24} - \frac{n^2}{4} + O(n)$.

If we 2-color the edges of K_n how many mono K_3 's do we have? **VOTE** (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . **Answer**~ n^3 . Actually $\frac{n^3}{24} - \frac{n^2}{4} + O(n)$.

We do one case: $n \equiv 1 \pmod{2}$.

If we 2-color the edges of K_n how many mono K_3 's do we have? **VOTE** (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . **Answer**~ n^3 . Actually $\frac{n^3}{24} - \frac{n^2}{4} + O(n)$.

We do one case: $n \equiv 1 \pmod{2}$. Let *COL* be a coloring of the edges of K_n .

If we 2-color the edges of K_n how many mono K_3 's do we have? **VOTE** (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . **Answer**~ n^3 . Actually $\frac{n^3}{24} - \frac{n^2}{4} + O(n)$.

We do one case: $n \equiv 1 \pmod{2}$. Let *COL* be a coloring of the edges of K_n . Then degree of each vertex is $n - 1 \equiv 0 \pmod{2}$.

If we 2-color the edges of K_n how many mono K_3 's do we have? **VOTE** (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . **Answer**~ n^3 . Actually $\frac{n^3}{24} - \frac{n^2}{4} + O(n)$.

We do one case: $n \equiv 1 \pmod{2}$. Let *COL* be a coloring of the edges of K_n . Then degree of each vertex is $n - 1 \equiv 0 \pmod{2}$.

We find an upper bound on |ZAN|.

Maximize |ZAN|

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE. Each vertex contributes $\left(\frac{n-1}{2}\right)^2$ (this is in \mathbb{N} since $n-1 \equiv 0 \pmod{2}$).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Maximize |ZAN|

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE. Each vertex contributes $\left(\frac{n-1}{2}\right)^2$ (this is in \mathbb{N} since $n-1 \equiv 0 \pmod{2}$).

$$|ZAN| \le n \frac{(n-1)^2}{4} = \frac{(n-1)^2 n}{4}$$
 so

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Maximize |ZAN|

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE. Each vertex contributes $\left(\frac{n-1}{2}\right)^2$ (this is in \mathbb{N} since $n-1 \equiv 0 \pmod{2}$).

$$|ZAN| \le n \frac{(n-1)^2}{4} = \frac{(n-1)^2 n}{4}$$
 so $|M| = |ZAN|/2 \le \frac{(n-1)^2 n}{8}$

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6}$$
 hence

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = {n \choose 3} = \frac{n(n-1)(n-2)}{6}$$
 hence
 $|R| + |B| = \frac{n(n-1)(n-2)}{6} - |M|$ hence

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6}$$
 hence
$$|R| + |B| = \frac{n(n-1)(n-2)}{6} - |M|$$
 hence
$$|R| + |B| \ge \frac{n(n-1)(n-2)}{6} - \frac{(n-1)^2n}{8}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \text{ hence}$$
$$|R| + |B| = \frac{n(n-1)(n-2)}{6} - |M| \text{ hence}$$
$$|R| + |B| \ge \frac{n(n-1)(n-2)}{6} - \frac{(n-1)^2n}{8}$$
$$= \frac{n^3}{24} - \frac{n^2}{4} + \frac{5n}{24}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

What About The Other Cases?

We leave the other cases to the reader to both determine the theorem and prove it.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Can This Be Improved?

The bound is known to be tight.

Lets Party Like Its 2019

The following is an early theorem in Ramsey Theory:

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Lets Party Like Its 2019

The following is an early theorem in Ramsey Theory: Thm For all 2-col of the edges of K_{18} there is a mono K_4 .

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36,

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$,

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists 2 \mod K_4$'s? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. **Answer** This is really two questions.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's Smallest *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? VOTE (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. Answer This is really two questions.

1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's Smallest *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? VOTE (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. Answer This is really two questions.

1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's. The proof used a clever computer search. This is interesting to know but the proof is not math-interesting.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's Smallest *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? VOTE (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. Answer This is really two questions.

1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's. The proof used a clever computer search. This is interesting to know but the proof is not math-interesting.

2. I will present a math-interesting proof of the following: For all 2-cols of K_{19} there are TWO mono K_4 's.

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

 $A_1, A_2, \ldots, A_{\binom{19}{18}}.$

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

ション ふゆ アメリア メリア しょうくしゃ

Since $|A_i| = R(4)$, each A_i has a mono K_4 .

Proof of K_{19} Two K_4 Theorem

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

Since $|A_i| = R(4)$, each A_i has a mono K_4 . So we get $\binom{19}{18}$ mono K_4 's. So we are almost there.

Proof of K_{19} Two K_4 Theorem

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

Since $|A_i| = R(4)$, each A_i has a mono K_4 . So we get $\binom{19}{18}$ mono K_4 's. So we are almost there. **YOU" VE BEEN PUNKED**. It is quite possible that the mono K_4 from A_3 and the mono K_4 from A_9 are the same.

Proof of K_{19} Two K_4 Theorem

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

Since $|A_i| = R(4)$, each A_i has a mono K_4 . So we get $\binom{19}{18}$ mono K_4 's. So we are almost there. **YOU''VE BEEN PUNKED**. It is quite possible that the mono K_4 from A_3 and the mono K_4 from A_9 are the same. For the real proof, see next slide.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

 $A_1, A_2, \ldots, A_{\binom{19}{18}}.$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.)

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, \ldots, 19\} - \{i\}$.)

- 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$.
- 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these.

List out all subsets of $V = \{1, \dots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19-4}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 . 3) Since B_1 has 18 = R(4) vertices, there is a mono K_4

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 . 3) Since B_1 has 18 = R(4) vertices, there is a mono K_4 4) The mono K_4 from A_1 , and the mono K_4 from B are different.

・ロト・西ト・ヨト・ヨー うらぐ

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find a mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 . 3) Since B_1 has 18 = R(4) vertices, there is a mono K_4 4) The mono K_4 from A_1 , and the mono K_4 from B are different. Those are our 2 mono K_4 's.

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Assume that the first K_4 is $\{16, 17, 18, 19\}$

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

Assume that the first K_4 is $\{16, 17, 18, 19\}$

Assume that the second K_4 is $\{12, 13, 14, 15\}$

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

- Assume that the first K_4 is $\{16, 17, 18, 19\}$
- Assume that the second K_4 is $\{12, 13, 14, 15\}$
- So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's. Assume that the first K_4 is $\{16, 17, 18, 19\}$ Assume that the second K_4 is $\{12, 13, 14, 15\}$ So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where A has all of $\{16, 17, 18, 19\}$, or

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's. Assume that the first K_4 is {16, 17, 18, 19} Assume that the second K_4 is {12, 13, 14, 15} So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where A has all of {16, 17, 18, 19}, or A has all of {12, 13, 14, 15}.

```
We show that the technique to get 2 mono K_4's cannot be
extended to give 3 mono K_4's.
Assume that the first K_4 is {16,17,18,19}
Assume that the second K_4 is {12,13,14,15}
So we have removed all A \subseteq \{1, \ldots, 19\} of size 18 where
A has all of {16,17,18,19}, or
A has all of {12,13,14,15}.
Whats left?
```

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

```
Assume that the first K_4 is \{16, 17, 18, 19\}
```

Assume that the second K_4 is $\{12, 13, 14, 15\}$

So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where

```
A has all of \{16, 17, 18, 19\}, or
```

```
A has all of \{12, 13, 14, 15\}.
```

Whats left?All $A \subseteq \{1, \ldots, 19\}$ of size 18 that are missing at least one of $\{16, 17, 18, 19\}$ and at least one of $\{12, 13, 14, 15\}$.

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

```
Assume that the first K_4 is \{16, 17, 18, 19\}
```

Assume that the second K_4 is $\{12, 13, 14, 15\}$

So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where

```
A has all of \{16, 17, 18, 19\}, or
```

```
A has all of \{12, 13, 14, 15\}.
```

```
Whats left?All A \subseteq \{1, \ldots, 19\} of size 18 that are missing at least one of \{16, 17, 18, 19\} and at least one of \{12, 13, 14, 15\}.
```

```
If A \subseteq \{1, \ldots, 19\} is missing two elements it is of size 17.
```

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

```
Assume that the first K_4 is \{16, 17, 18, 19\}
```

Assume that the second K_4 is $\{12, 13, 14, 15\}$

So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where

```
A has all of \{16, 17, 18, 19\}, or
```

```
A has all of \{12, 13, 14, 15\}.
```

Whats left?All $A \subseteq \{1, \ldots, 19\}$ of size 18 that are missing at least one of $\{16, 17, 18, 19\}$ and at least one of $\{12, 13, 14, 15\}$. If $A \subseteq \{1, \ldots, 19\}$ is missing two elements it is of size 17.

Hence there are none left.

We show that the technique to get 2 mono K_4 's cannot be extended to give 3 mono K_4 's.

```
Assume that the first K_4 is \{16, 17, 18, 19\}
```

Assume that the second K_4 is $\{12, 13, 14, 15\}$

So we have removed all $A \subseteq \{1, \ldots, 19\}$ of size 18 where

```
A has all of \{16, 17, 18, 19\}, or
```

```
A has all of \{12, 13, 14, 15\}.
```

```
Whats left?All A \subseteq \{1, \ldots, 19\} of size 18 that are missing at least one of \{16, 17, 18, 19\} and at least one of \{12, 13, 14, 15\}.
```

If $A \subseteq \{1, \ldots, 19\}$ is missing two elements it is of size 17.

Hence there are none left.

Note We only showed that the **proof** cannot be extended. As noted above any 2-col of K_{18} has 9 mono K_4 's.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1) Find a mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

Find a mono K₄ in A₁. Say its {x₁, x₂, x₃, x₄}.
 REMOVE all A_i's that have all of {x₁, x₂, x₃, x₄}.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find a mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find a mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find a mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find a mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find a mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$. 4) REMOVE all A_i 's that have all of $\{y_1, y_2, y_3, y_4\}$.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find a mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find a mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$. 4) REMOVE all A_i 's that have all of $\{y_1, y_2, y_3, y_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - 2\binom{n-4}{14}$ left.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find a mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find a mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$. 4) REMOVE all A_i 's that have all of $\{y_1, y_2, y_3, y_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - 2\binom{n-4}{14}$ left. 5) Find a mono K_4 in one of the sets left. Now have 3. But...

Want 3 Mono K₄'s (cont)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Need

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$
$$\frac{n!}{18!(n-18)!} > 2\frac{(n-4)!}{14!(n-18)!}$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$
$$\frac{n!}{18!(n-18)!} > 2\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18 \times 17 \times 16 \times 15} > 2(n-4)!$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$
$$\frac{n!}{18!(n-18)!} > 2\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18 \times 17 \times 16 \times 15} > 2(n-4)!$$

 $n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15$

*ロ * * @ * * ミ * ミ * ミ * シ * や * や * や * や * や * *

 $n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$

$n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$

n	n(n-1)(n-2)(n-3)
19	93024
20	116280
21	143640
22	175560

 $n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$

n	n(n-1)(n-2)(n-3)
19	93024
20	116280
21	143640
22	175560

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Thm \forall 2-cols of the edges of $K_{22} \exists$ 3 mono K_4 's.

The key to the prior proof is how many A_i 's do you remove.

Want m Mono K_4 's

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m+1 mono K_4 's.

ション ふゆ アメリア メリア しょうくしゃ

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m + 1 mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m+1 mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m+1 mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset . 2) Take order $A \in SETA$, where K is A = K (where K is A = 0.

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K = \{x_1, x_2, x_3, x_4\}$.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m+1 mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset . 2) Take orth $A \in SETA$ \supseteq means K in A K (we serve K if

2) Take arb A ∈ SETA. ∃ mono K₄ in A, K = {x₁, x₂, x₃, x₄}.
▶ SETK4 = SETK4 ∪ {K}.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m+1 mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K = \{x_1, x_2, x_3, x_4\}$.

 $\blacktriangleright \text{ SETK4} = \text{SETK4} \cup \{K\}.$

▶ SETA = SETA - { $A \in SETA : x_1, x_2, x_3, x_4 \in A$ }.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18} = \binom{n-4}{14}$ in each iteration. **Thm** Let $m, n \geq \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \geq 1$. For any 2-col of K_n there exists m+1 mono K_4 's. Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{10}}$. 1) SETA = { $A_1, A_2, \ldots, A_{\binom{n}{18}}$ }. SETK4 = \emptyset . 2) Take arb $A \in SETA$. \exists mono K_4 in A, $K = \{x_1, x_2, x_3, x_4\}$. ▶ SETK4 = SETK4 \cup {*K*}. ▶ SETA = SETA - { $A \in SETA : x_1, x_2, x_3, x_4 \in A$ }.

3) If SETA $\neq \emptyset$ then go to step 2. Else STOP.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - m\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m + 1 mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K = \{x_1, x_2, x_3, x_4\}$.

$$\blacktriangleright \text{ SETK4} = \text{SETK4} \cup \{K\}.$$

▶ SETA = SETA - { $A \in SETA : x_1, x_2, x_3, x_4 \in A$ }.

3) If SETA $\neq \emptyset$ then go to step 2. Else STOP. Since $\binom{n}{13} - m\binom{n-4}{14} \ge 1$ this process can go for $\ge m+1$ iterations and produce $\ge m+1$ mono K_4 's.

We just proved that for all $n, m \in \mathbb{N}$: Thm If $\binom{n}{18} - m\binom{n-4}{14} \ge 1$ then \forall 2-col of $K_n \exists m+1 \mod K_4$'s.

We just proved that for all $n, m \in \mathbb{N}$: **Thm** If $\binom{n}{18} - m\binom{n-4}{14} \ge 1$ then \forall 2-col of $K_n \exists m+1 \mod K_4$'s. We want m as a function of n.

We just proved that for all $n, m \in \mathbb{N}$: **Thm** If $\binom{n}{18} - m\binom{n-4}{14} \ge 1$ then \forall 2-col of $K_n \exists m+1 \mod K_4$'s. We want m as a function of n.

$$\binom{n}{18} - m\binom{n-4}{14} \ge 0$$

We just proved that for all $n, m \in \mathbb{N}$: **Thm** If $\binom{n}{18} - m\binom{n-4}{14} \ge 1$ then \forall 2-col of $K_n \exists m+1 \mod K_4$'s. We want m as a function of n.

$$\binom{n}{18} - m\binom{n-4}{14} \ge 0$$

$$m \le \frac{\binom{n}{18}}{\binom{n-4}{14}} = \frac{n!}{18!(n-18)!} \frac{14!(n-18)!}{(n-4)!} = \frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15}$$

We just proved that for all $n, m \in \mathbb{N}$: **Thm** If $\binom{n}{18} - m\binom{n-4}{14} \ge 1$ then \forall 2-col of $K_n \exists m+1 \mod K_4$'s. We want m as a function of n.

$$\binom{n}{18} - m\binom{n-4}{14} \ge 0$$

$$m \le \frac{\binom{n}{18}}{\binom{n-4}{14}} = \frac{n!}{18!(n-18)!} \frac{14!(n-18)!}{(n-4)!} = \frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15}$$

We state a theorem which expresses this in several ways, on the next slide.

ション ふゆ アメリア メリア しょうくしゃ

・ロト・日本・ モー・ モー うえぐ

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{n}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{18}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

2) There are
$$\frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15} + 1$$
 mono K_4 's.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{18}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

2) There are
$$\frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15} + 1$$
 mono K_4 's.

3) There are
$$\frac{n(n-1)(n-2)(n-3)}{73440} + 1$$
 mono K_4 's.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{3}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

2) There are
$$\frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15} + 1$$
 mono K_4 's.

3) There are
$$\frac{n(n-1)(n-2)(n-3)}{73440} + 1$$
 mono K_4 's.

4) There are
$$\frac{n^4}{73440} - \frac{n^3}{12240} + \Omega(n^2)$$
 mono K_4 's.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24}$ mono K_3 . In K_n there are $\binom{n}{3}$ triples.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$. In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$. In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3} \mod K_3$.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$. In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3} \mod K_3$. There are $\sim \frac{n^4}{73440} \mod K_4$'s.

ション ふゆ アメリア メリア しょうくしゃ

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24}$ mono K_3 . In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3}$ mono K_3 . There are $\sim \frac{n^4}{73440}$ mono K_4 's. We rephrase this as what fraction of the $\binom{n}{4}$ K_4 's are mono.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24}$ mono K_3 . In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3}$ mono K_3 . There are $\sim \frac{n^4}{73440}$ mono K_4 's. We rephrase this as what fraction of the $\binom{n}{4}$ K_4 's are mono. There are $\frac{1}{3060} \binom{n}{4}$ mono K_4 's.

Left to the reader

Left to the reader

1. Generalize to mono K_m .

Left to the reader

1. Generalize to mono K_m .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. Generalize to *c* colors.

Left to the reader

- 1. Generalize to mono K_m .
- 2. Generalize to *c* colors.
- 3. Generalize to c colors and mono K_m .

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで