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Thm For all 2-col of the edges of K6 there is a mono K3.
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Trivial Theorem, Non Trivial Extension

Thm For all 2-cols of edges of K12 there are 2 mono K3’s
Question Find n such that

1. For all 2-col of the edges of Kn there are 2 mono K3’s

2. There exists a 2-col of the edges of Kn−1 that does not have 2
mono K3’s.

VOTE (1) n = 12, (2) 9 ≤ n ≤ 10, (3) 6 ≤ n ≤ 8.
Answer n = 6.

1. For all 2-col of the edges of K6 there are 2 mono K3’s

2. There exists a 2-col of the edges of K5 that does not have any
mono K3’s.
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Proof of K6 Two Triangles Theorem

Thm For all 2-cols of edges of K6 there are 2 mono K3’s
Proof Let COL be a 2-col of the edges of K6.
Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

|R|+ |B|+ |M| =

(
6

3

)
= 20.

We show that |M| ≤ 18, so |R|+ |B| ≥ 2.



A Mixed Triangle Has a Vertex Such That

v1

v2 v3

I (v2, v1) is red, (v2, v3) is blue. View this as (v2, {v1, v3}).

I (v3, v1) is red, (v3, v2) is blue. View this as (v3, {v1, v2}).



Map ZAN to M

Def A Zan is an element (v , {u,w}) ∈ V ×
(V
2

)
such that

v /∈ {u,w} and COL(v , u) 6= COL(v ,w). ZAN is the set of Zan’s.

Map ZAN to M by mapping (v , {u,w}) to triangle {v , u,w}.
Claim This mapping is exactly 2-to-1.
What Zan’s map to the triangle:

v1

v2 v3

(v2, {v1, v3}) and (v3, {v1, v2}).
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Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

|M| = |ZAN|/2

Now we want to bound |ZAN|.
Look at vertex v . How many ZAN’s use v as their base point?
Depends on degR(v) and degB(v).
Thought experiment If degR(v) = 3 and degB(v) = 2 then how
many ZAN’s are of the form

{v , {x , y}}

x : COL(v , x) = RED. There are degR(v) of them.
y : COL(v , y) = BLUE. There are degB(v) of them.
So v contributes degR(v)× degB(v).
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Contributions!

Cases

1. v has degR(v) = 5 or degB(v) = 0: v contributes 0.

2. v has degR(v) = 4 or degB(v) = 1: v contributes 4.

3. v has degR(v) = 3 or degB(v) = 2: v contributes 6. Max.

6 vertices, each contribute ≤ 6, so

|M| = |ZAN|/2 ≤ 6× 6/2 = 18, so

|R|+ |B| ≥ 20− |M| ≥ 2
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Summary

|R|+ |B|+ |M| =

(
6

3

)
= 20

Map ZAN to M. Map is 2-to-1, so |M| = |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B).
|ZAN| ≤ 6× 6 = 36.

|M| = |ZAN|/2 = 18.

|R|+ |B| ≥ 20− |M| ≥ 2.

So there are at least 2 Mono Triangles.
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Generalization

If we 2-color the edges of Kn how many mono K3’s do we have?

VOTE (1) ∼ nc for some c < 1, (2) ∼ n (3) ∼ n2, (4) ∼ n3.

Answer∼ n3. Actually n3

24 −
n2

4 + O(n).

We do one case: n ≡ 1 (mod 2).
Let COL be a coloring of the edges of Kn.
Then degree of each vertex is n − 1 ≡ 0 (mod 2).

We find an upper bound on |ZAN|.
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Maximize |ZAN |

To maximize |ZAN| we would, at each vertex, color half of the
edges RED and half BLUE.

Each vertex contributes (n−1
2 )2 (this is in N since n − 1 ≡ 0

(mod 2)).

|ZAN| ≤ n
(n − 1)2

4
=

(n − 1)2n

4
so

|M| = |ZAN|/2 ≤ (n − 1)2n

8
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Finishing Up The Proof

Recap

|M| ≤ (n − 1)2n

8

Recall

|R|+ |B|+ |M| =

(
n

3

)
=

n(n − 1)(n − 2)

6
hence

|R|+ |B| =
n(n − 1)(n − 2)

6
− |M| hence

|R|+ |B| ≥ n(n − 1)(n − 2)

6
− (n − 1)2n

8

=
n3

24
− n2
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+

5n
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What About The Other Cases?

We leave the other cases to the reader to both determine the
theorem and prove it.



Can This Be Improved?

The bound is known to be tight.
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The following is an early theorem in Ramsey Theory:

Thm For all 2-col of the edges of K18 there is a mono K4.
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Trivial Theorem, Non Trivial Extension

Thm For all 2-cols of edges of K36 there are 2 mono K4’s

Smallest n such that ∀ 2-col of edges of Kn ∃ 2 mono K4’s?
VOTE (1) n = 36, (2) Some n, 19 ≤ n ≤ 35, (3) n = 18.
Answer This is really two questions.

1. As posed the answer is n = 18. Piwakoswki and Radziszowski
https://www.cs.rit.edu/~spr/PUBL/paper40.pdf

showed that for every 2-col of K18 there are 9 mono K4’s.
The proof used a clever computer search. This is interesting
to know but the proof is not math-interesting.

2. I will present a math-interesting proof of the following:
For all 2-cols of K19 there are TWO mono K4’s.

https://www.cs.rit.edu/~spr/PUBL/paper40.pdf
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Proof of K19 Two K4 Theorem

Thm For all 2-cols of edges of K19 there are 2 mono K4’s

Assume you have a 2-col of the edges of K19.

List out all subsets of V = {1, . . . , 19} of size R(4) = 18.

A1,A2, . . . ,A(1918)
.

Since |Ai | = R(4), each Ai has a mono K4.

So we get
(19
18

)
mono K4’s. So we are almost there.

YOU”VE BEEN PUNKED. It is quite possible that the mono K4

from A3 and the mono K4 from A9 are the same.

For the real proof, see next slide.
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Proof of K19 Two K4 Theorem (cont)

List out all subsets of V = {1, . . . , 19} of size R(4) = 18.

A1,A2, . . . ,A(1918)
.

(There are just 19 of these, Ai = {1, . . . , 19} − {i}.)
1) Find a mono K4 in A1. Say its {16, 17, 18, 19}.
2) REMOVE all Ai ’s that have all of {16, 17, 18, 19}.
There are

(19−4
18−4

)
=

(15
14

)
= 15 of these.

There are
(19
18

)
−
(15
14

)
= 19− 15 = 4 left. Call then B1,B2,B3,B4.

3) Since B1 has 18 = R(4) vertices, there is a mono K4

4) The mono K4 from A1, and the mono K4 from B are different.
Those are our 2 mono K4’s.
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Can the Proof Give 3 mono K4’s?

We show that the technique to get 2 mono K4’s cannot be
extended to give 3 mono K4’s.

Assume that the first K4 is {16, 17, 18, 19}
Assume that the second K4 is {12, 13, 14, 15}
So we have removed all A ⊆ {1, . . . , 19} of size 18 where

A has all of {16, 17, 18, 19}, or

A has all of {12, 13, 14, 15}.
Whats left?All A ⊆ {1, . . . , 19} of size 18 that are missing at least
one of {16, 17, 18, 19} and at least one of {12, 13, 14, 15}.
If A ⊆ {1, . . . , 19} is missing two elements it is of size 17.

Hence there are none left.

Note We only showed that the proof cannot be extended. As
noted above any 2-col of K18 has 9 mono K4’s.
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Hence there are none left.

Note We only showed that the proof cannot be extended. As
noted above any 2-col of K18 has 9 mono K4’s.
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Want n such that ∀ 2-col ∃3 Mono K4’s

∀ 2-col of Kn ∃ 3 mono K4’s.

List out all subsets of V = {1, . . . , n} of size R(4) = 18.

A1,A2, . . . ,A( n
18)

.

1) Find a mono K4 in A1. Say its {x1, x2, x3, x4}.
2) REMOVE all Ai ’s that have all of {x1, x2, x3, x4}.( n−4
18−4

)
=

(n−4
14

)
of these. There are

( n
18

)
−
(n−4

14

)
left.

3) Find a mono K4 in one of the sets left. Say its {y1, y2, y3, y4}.
4) REMOVE all Ai ’s that have all of {y1, y2, y3, y4}.( n−4
18−4

)
=

(n−4
14

)
of these. There are

( n
18

)
− 2

(n−4
14

)
left.

5) Find a mono K4 in one of the sets left. Now have 3. But. . ..
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Want 3 Mono K4’s (cont)

Need
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n

18

)
− 2

(
n − 4

14

)
≥ 1

(
n

18

)
− 2

(
n − 4

14

)
> 0

n!

18!(n − 18)!
> 2

(n − 4)!

14!(n − 18)!

n!

18× 17× 16× 15
> 2(n − 4)!

n(n − 1)(n − 2)(n − 3) > 2× 18× 17× 16× 15
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Want 3 Mono K4’s (cont)

n(n − 1)(n − 2)(n − 3) > 2× 18× 17× 16× 15 = 146889.

n n(n − 1)(n − 2)(n − 3)

19 93024
20 116280
21 143640
22 175560

Thm ∀ 2-cols of the edges of K22 ∃ 3 mono K4’s.
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Want m Mono K4’s

The key to the prior proof is how many Ai ’s do you remove.

We removed
( n−4
18−4

)
=

(n−4
14

)
in each iteration.

Thm Let m, n ≥ N. Assume
( n
18

)
−m

(n−4
14

)
≥ 1. For any 2-col of

Kn there exists m + 1 mono K4’s.

Subsets of V = {1, . . . , n}, size R(4) = 18: A1,A2, . . . ,A( n
18)

.

1) SETA = {A1,A2, . . . ,A( n
18)
}. SETK4 = ∅.

2) Take arb A ∈ SETA. ∃ mono K4 in A, K = {x1, x2, x3, x4}.
I SETK4 = SETK4 ∪ {K}.
I SETA = SETA− {A ∈ SETA : x1, x2, x3, x4 ∈ A}.

3) If SETA 6= ∅ then go to step 2. Else STOP.

Since
( n
18

)
−m

(n−4
14

)
≥ 1 this process can go for ≥ m + 1 iterations

and produce ≥ m + 1 mono K4’s.



Want m Mono K4’s

The key to the prior proof is how many Ai ’s do you remove.

We removed
( n−4
18−4

)
=

(n−4
14

)
in each iteration.

Thm Let m, n ≥ N. Assume
( n
18

)
−m

(n−4
14

)
≥ 1. For any 2-col of

Kn there exists m + 1 mono K4’s.

Subsets of V = {1, . . . , n}, size R(4) = 18: A1,A2, . . . ,A( n
18)

.

1) SETA = {A1,A2, . . . ,A( n
18)
}. SETK4 = ∅.

2) Take arb A ∈ SETA. ∃ mono K4 in A, K = {x1, x2, x3, x4}.
I SETK4 = SETK4 ∪ {K}.
I SETA = SETA− {A ∈ SETA : x1, x2, x3, x4 ∈ A}.

3) If SETA 6= ∅ then go to step 2. Else STOP.

Since
( n
18

)
−m

(n−4
14

)
≥ 1 this process can go for ≥ m + 1 iterations

and produce ≥ m + 1 mono K4’s.



Want m Mono K4’s

The key to the prior proof is how many Ai ’s do you remove.

We removed
( n−4
18−4

)
=

(n−4
14

)
in each iteration.

Thm Let m, n ≥ N. Assume
( n
18

)
−m

(n−4
14

)
≥ 1. For any 2-col of

Kn there exists m + 1 mono K4’s.

Subsets of V = {1, . . . , n}, size R(4) = 18: A1,A2, . . . ,A( n
18)

.

1) SETA = {A1,A2, . . . ,A( n
18)
}. SETK4 = ∅.

2) Take arb A ∈ SETA. ∃ mono K4 in A, K = {x1, x2, x3, x4}.
I SETK4 = SETK4 ∪ {K}.
I SETA = SETA− {A ∈ SETA : x1, x2, x3, x4 ∈ A}.

3) If SETA 6= ∅ then go to step 2. Else STOP.

Since
( n
18

)
−m

(n−4
14

)
≥ 1 this process can go for ≥ m + 1 iterations

and produce ≥ m + 1 mono K4’s.



Want m Mono K4’s

The key to the prior proof is how many Ai ’s do you remove.

We removed
( n−4
18−4

)
=

(n−4
14

)
in each iteration.

Thm Let m, n ≥ N. Assume
( n
18

)
−m

(n−4
14

)
≥ 1. For any 2-col of

Kn there exists m + 1 mono K4’s.

Subsets of V = {1, . . . , n}, size R(4) = 18: A1,A2, . . . ,A( n
18)

.

1) SETA = {A1,A2, . . . ,A( n
18)
}. SETK4 = ∅.

2) Take arb A ∈ SETA. ∃ mono K4 in A, K = {x1, x2, x3, x4}.
I SETK4 = SETK4 ∪ {K}.
I SETA = SETA− {A ∈ SETA : x1, x2, x3, x4 ∈ A}.

3) If SETA 6= ∅ then go to step 2. Else STOP.

Since
( n
18

)
−m

(n−4
14

)
≥ 1 this process can go for ≥ m + 1 iterations

and produce ≥ m + 1 mono K4’s.



Want m Mono K4’s

The key to the prior proof is how many Ai ’s do you remove.

We removed
( n−4
18−4

)
=

(n−4
14

)
in each iteration.

Thm Let m, n ≥ N. Assume
( n
18

)
−m

(n−4
14

)
≥ 1. For any 2-col of

Kn there exists m + 1 mono K4’s.

Subsets of V = {1, . . . , n}, size R(4) = 18: A1,A2, . . . ,A( n
18)

.

1) SETA = {A1,A2, . . . ,A( n
18)
}. SETK4 = ∅.

2) Take arb A ∈ SETA. ∃ mono K4 in A, K = {x1, x2, x3, x4}.
I SETK4 = SETK4 ∪ {K}.
I SETA = SETA− {A ∈ SETA : x1, x2, x3, x4 ∈ A}.

3) If SETA 6= ∅ then go to step 2. Else STOP.

Since
( n
18

)
−m

(n−4
14

)
≥ 1 this process can go for ≥ m + 1 iterations

and produce ≥ m + 1 mono K4’s.



Want m Mono K4’s

The key to the prior proof is how many Ai ’s do you remove.

We removed
( n−4
18−4

)
=

(n−4
14

)
in each iteration.

Thm Let m, n ≥ N. Assume
( n
18

)
−m

(n−4
14

)
≥ 1. For any 2-col of

Kn there exists m + 1 mono K4’s.

Subsets of V = {1, . . . , n}, size R(4) = 18: A1,A2, . . . ,A( n
18)

.

1) SETA = {A1,A2, . . . ,A( n
18)
}. SETK4 = ∅.

2) Take arb A ∈ SETA. ∃ mono K4 in A, K = {x1, x2, x3, x4}.

I SETK4 = SETK4 ∪ {K}.
I SETA = SETA− {A ∈ SETA : x1, x2, x3, x4 ∈ A}.

3) If SETA 6= ∅ then go to step 2. Else STOP.

Since
( n
18

)
−m
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14
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≥ 1 this process can go for ≥ m + 1 iterations

and produce ≥ m + 1 mono K4’s.
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Want m Mono K4’s (cont)

We just proved that for all n,m ∈ N:
Thm If

( n
18

)
−m

(n−4
14

)
≥ 1 then ∀ 2-col of Kn ∃ m + 1 mono K4’s.

We want m as a function of n.(
n

18

)
−m

(
n − 4

14

)
≥ 0

m ≤
( n
18

)(n−4
14

) =
n!

18!(n − 18)!

14!(n − 18)!

(n − 4)!
=

n(n − 1)(n − 2)(n − 3)

18× 17× 16× 15

We state a theorem which expresses this in several ways, on the
next slide.
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More Versions

Thm Let n ≥ N. ∀ 2-col of Kn the following happens.

1) There are

⌊
( n
18)

(n−4
14 )

⌋
+ 1 mono K4’s.

2) There are n(n−1)(n−2)(n−3)
18×17×16×15 + 1 mono K4’s.

3) There are n(n−1)(n−2)(n−3)
73440 + 1 mono K4’s.

4) There are n4

73440 −
n3

12240 + Ω(n2) mono K4’s.
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Another Way to Phrase The Results

Thm ∀ 2-cols of Kn ∃ ∼ n3

24 mono K3.

In Kn there are
(n
3

)
triples.

We want to know the fraction of them that are mono.

Thm ∀ 2-cols of Kn ∃ ∼ 1
8

(n
3

)
mono K3.

There are ∼ n4

73440 mono K4’s.

We rephrase this as what fraction of the
(n
4

)
K4’s are mono.

There are 1
3060

(n
4

)
mono K4’s.
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