Combinatorial Proofs of Sane Bounds on Some Polynomial van der Waerden Numbers
by William Gasarchl, Clyde P. Kruskal’, Justin D. Kruskal’, Zach Pricd]

Abstract

Let p € Z[z] and ¢ € N. Then there exists a W such that, for any c-coloring of [W],
there exists a and d such that a and a 4 p(d) are the same color. This is a special case
of the Polynomial Van Der Waerden theorem. The known proofs give insane bounds
on W. In this paper we give sane bounds for some p and ¢ = 2, 3, 4.

1 Introduction

We use the following standard notation and definitions.

Def 1.1 Let Z be the set of integers, N be the set of non-negative integers, and N* be the
set of positive integers. If W € N* then let [W] be the set {1,...,W}.

Recall van Der Waerden’s Theorem [I16] (see also [5], [7]), which says that, for any c-
coloring of a large enough initial segment of the naturals, there will large monochromatic
arithmetic sequences. Formally:

Theorem 1.2 For any k,c € N, there exists W = W (k, c), such that for any c-coloring of
(W1, there exists a,d € N, d # 0, such that a,a +d,...,a+ (k —1)d are all the same color.

The original proof by van der Waerden was purely combinatorial and yielded bounds
on W that were INSANE (called EEEEEEEEEENORMOUS by [5]). In particular, the
proof used an w? induction and W (k,c) was bounded by a function that is not primitive
recursive. Shelah [I5] gave a purely combinatorial proof that yielded bounds that were
HUGE, though not INSANE. In particular the bounds were primitive recursive. Gowers [4]
gave a proof using non-combinatorial (and difficult) techniques that yielded bounds that
were much smaller than Shelah’s bounds, but still HUGE:
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1U. of MD at College Park, Dept of CS, gasarch@cs.umd.edu

2U. of MD at College Park, Dept of CS, kruskal@cs.umd.edu

SEPIC Computing, tinsuj@gmail.com

4George Mason University, Dept of Mathematics, zprice11@gmail.com



We discuss a known generalization of van der Waerden’s theorem. Recall that the con-
clusion of van der Waerden’s theorem is that

a,a+d,a+2d,...,a+ (k— 1)d are the same color.

Can we replace d,2d, ..., (k — 1)d by other functions of d? Yes. We can replace them with
polynomials with coefficients in Z and no constant term. Here is the Polynomial van Der
Waerden Theorem:

Theorem 1.3 Let pi(z),...,pp(x) € Z[z] such that, for 1 < i <k, p;(0) =0. Let c € N.
Then there exists W = W{(pi(z),...,pr(x);c) such that, for any c-coloring of [W], there
evists a,d € N, d # 0, such that a,a + pi(d),...,a+ pp(d) are all the same color.

For k =1 and p;(x) = 22, this theorem was proven independently by Furstenberg [3] and
Sarkozy [13]. Bergelson and Leibman [I] proved the full result using ergodic methods. The
proofs by Furstenberg and Bergelson-Leibman yielded no upper bounds on W (p;(z), ..., pr(x); ¢)
(Sarkozy proof did as we will see later.) Walters [17] proved Theorem |1.3[using combinatorial
techniques, which yielded bounds on W that were INSANE. In particular, the proof used
an w* induction and W (py(z),. .., pr(z);c) was bounded by a function that is not primitive
recursive. Once again Shelah [14] gave a purely combinatorial proof that yielded bounds
that were HUGE, though not INSANE. In particular the bounds are primitive recursive.
Peluse [§] has the best known upper bounds for sets of polynomials of distinct degrees.
Peluse and Prediville [9] have the best known upper bounds for W (x?, 22 + z; ¢). With some
effort one can write down these bounds in many cases (similar to Gowers bound on van Der
Warden Numbers).

We are interested in the case of W (az? + bx;c) where ¢ = 2,3, 4. Furstenberg’s proof
showed that W (z?;c) exists; however, his proof gave no upper bounds. Sarkozy’s proof
showed that W (z%; ¢) < 20("). Pintz, Steiger, and Szemeredi [10] (see also [6] and [I1] for
exposition) showed that W (z?;c) < 20(™ ™) The 0.0001 can be replaced with any € > 0,
however, in that case the constant associated with the big-O will increase. Similar comments
apply below when we use 0.0001.

Harnel, Lyall, and Rice [6] showed that there exists a function f : Z x Z — N such that

W (az? + bx; ) < 2f@0"™™
Later Rice [I1] showed that, for all k, there exists a function f : Z* — N such that

0-0001

W(aka:’“ I alx;c) < 2f(a;C ..... a1)



Rice [12] later obtained the following more precise result: for all € > 0, for all ay,...,a; € Z,
for J = |ay| + -+ + |ax|:
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W (aga® + - + ayz; ¢) < 2% + 2¢

In summary, the known bounds on W (az? + bx; c) are HUGE.

In this paper we show that, for some p(x) € Z[z| and ¢ = 2,3,4, one can obtain sane
bounds on W (p(x); c). Our proofs will be purely combinatorial and easier than those Walters,
Shelah, Peluse, Prediville, and Rice. We hasten to point out that they proved far more
general cases of the poly van der Warden theorem whereas we only prove it in special cases.

We show the following.
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For all a € Z, W (az;c) = |ac| + 1.
W(x™;2) =2"+1 and, for all a € Z, W(az";2) = 2"a + 1.

Let p(x) € Z|z] such that p(0) = 0. Then W (p(x);2) is bounded above by the min of

p(x);
p(i)| + |p(4)| — g + 1 such that (a) 4,7 € N, (b) p(i), p(j) # 0, (c) g = ged(p(i), p(7)),
(d) either p(i)/g or p(j)/g is even. Appendix [A| has a table of some exact values of
W (az? + bx; 2).

W (2% 3) = 29 and, for all a € Z, W(ax?;3) = 28a + 1. Appendix [B| has a table of

some exact values of W (az? + bx; 3).

W (2% 4) < 84,149,474,894,213,522. Appendices|C| D] and [E|have tables of some upper
bounds on W (azx? + bx;4).

Preliminaries

We are concerned with colorings of initial segments of N that avoid certain distances between
same-colored naturals. For example an (x?; 4)-proper coloring of [1000] would be a 4-coloring
of [1000] where no points that are a square apart are the same color. More generally, we
have the following definition.

Def 2.1 Let c € Nt and W € NT.

1.
2.

A c-coloring of [W] is a mapping [W] — [c].

Let p(x) € Z[z]. A (p(x); c)-proper coloring of [W] is a c-coloring of [W] such that, for
all z,y € [W], if y—z = p(d) for some d € NT, then x and y have different colors. When
the context is clear, we will often write proper c-coloring or simply proper coloring.
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Note that the polynomial van der Waerden number, W = W (p(z);c), is the least num-
ber such that there is no (p(x);c)-proper coloring of [W]. Although we care about proper
(p(x); ¢)-colorings, we need a more general notion:

Def 2.2 Let F CZ, ce Nt, and W € N*.

e An (F;c)-proper coloring of [W] is a c-coloring of [W] such that, for all z,y € [W] with
y—x € F', x and y have different colors.

o W = W(F;c) is the least number such that there is no (F; ¢)-proper coloring of [W].
If no such number exists, we set W (F;¢) = oc.

We leave the following easy lemma to the reader.

Lemma 2.3 Let c € Nt.
1. If0 € F then W(F;c) = 1.
2. Assume f € F. Let ' = FU{—f}. Then W(F;c) = W(F';c).

We prove an easy theorem. The techniques to prove it yield a lemma that we will use
later.

Theorem 2.4
L W(%2)=5=4+1,
2. W(az%2) = (W(z%2) - Da+1=4a+1.

Proof:
1) W(2?;2) < 5: Assume, by way of contradiction, that COL is an (x?;2)-proper coloring
of [5]. We can assume COL(1) = R. Since 1 is a square we have COL(2) = B, COL(3) =
R, COL(4) = B, COL(5) = R. Then COL(1) = COL(5) with 5 — 1 = 2%, which is a
contradiction.
W (z?;5) > 5 via the following (z?%; 2)-proper coloring of [4]:

112134
R|\B|R|B

2) W(az?*2) < (W(z%2) — 1)a+ 1 = 4a + 1: Assume, by way of contradiction, that COL
is an (az?;2)-proper coloring of [4a + 1]. We use COL to define COL/, an (z?%;2)-proper
coloring of [5].



COL/(1) = COL(1)
COL/(2) = COL(a + 1)
COL/(3) = COL(2a + 1)
COL/(4) = COL(3a + 1)
COL/(5) = COL(4a + 1)

By using the fact that a and 4a are forbidden distances for COL, one can show that COL'
is an (z%; 2)-proper coloring of [5], which is a contradiction.

W(az?;2) > (W(2?2) —1)a+ 1 = 4a + 1: Let COL be an (x2;2)-proper coloring of [4].
We use COL to define COL/, an (az?;2)-proper coloring of [4a).

Let 1 <2z <4a. Let 0 <i<3,and 1 < j < a be such that x =ia + j. Let

COL/(z) = COL/(ia + j) = COL(i + 1).

By using that COL is an (x?;2)-proper coloring of [4], one can show that COL’ is an
(ax?;2)-proper coloring of [4a]. 1

Using the ideas behind Theorem [2.4]2 one can show the following:

Lemma 2.5 Let p(x) € Z[zx], a € Z, and ¢ € N. Then W(ap(z);c) = a(W(p(x);¢c) — 1)+ 1.

3 Linear polynomials
For completeness we cover linear polynomials, for which we obtain a complete solution.
Theorem 3.1 Leta € Z and ¢ € N*. Then

W(ax;c) = |ac| +1 .

Proof:  The case where a = 0 follows from Lemma[2.3]1. For a # o we have that |a| is a
forbidden distance.

W(ax;c) < |ac|+1: By setting z = 1,2,. .., c we get forbidden distances |al, |2al, ..., |cal.
So 1,]a| +1,|2a| + 1,...,|ca] + 1 must all be different colors, but there are only ¢ colors.
W (azx;c) > |ac|4+1: We can properly c-color [cal: color 1, ..., |a| by 1, color |a|+1, ..., |24

by 2, ..., color |(¢—1)a] +1,...,|ca| by c—1. |

4 Upper Bounds on W (p(z);2) for any p(x) € Z[z]

The following is our main lemma.



Lemma 4.1 Let s,t € NT. Let g = ged(s,t). Then

W({s,t};2) = {5+75—g+ L if either s/g ort/g is even

otherwise.

Proof:
Temporarily assume s and ¢ are relatively prime, so g = 1.

Let z = s+t. Let COL be a ({(s,t}; c)-proper coloring of [z — 1]. We are not aiming for
a contradiction; we are aiming to see that the entire coloring is forced.

Consider the list

smod z, 2s mod z, 3smod z, ..., (z —1)s mod z.

The absolute value of the difference of every pair of adjacent values is s or t. Hence 2s mod z
is B, 3s mod z is R, 4s mod z is B, etc.
Since s is relatively prime to t, it is also relatively prime to z. Hence

{smod z, 2smod z, ..., (z —1)s mod z} = [z — 1].

Therefore we have forced a 2-coloring of (all of) [z — 1]. We discuss if the coloring can be
extended beyond z — 1.
Extend Beyond z — 17: Whether this proper coloring can be extended beyond [z — 1]
depends on the parity of z:
CASE (1): Assume that either s or ¢ is even. (The other must be odd because we have
assumed that g = 1.)

Then z — 1 = s+t — 1 must be even, so that the first number in the above alternating
list of colors, s mod z, and the last number, (z — 1)s mod z, must have different colors. But

(z—1)s=z2s—s=-s=t (mod 2).

So z = s+t cannot be R or B, implying that the coloring cannot be extended to z.
CASE (2): Assume s and t are both odd.

The above alternating list of colors makes the odd numbers all have the same color, say R,
and the even numbers B (because each addition changes the parity of the number being
colored). Any number at or above s+t can be colored, but its color is forced by subtracting
s (or equivalently ¢). So the coloring can be uniquely extended to occ.

We have proven the theorem in the case of g = 1. If g > 2 then there is no interaction of
numbers x,y where x Z y (mod g). We leave it to the reader to use this to prove the g > 2
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case. 1

Theorem 4.2 Let p(x) € Z[z]| be a polynomial such that p(0) = 0. Fori,j € N let g;; =
ged(p(i), p(5)). Then W(p(x);2) is bounded above by the min of {|p(i)| + |p(j)| — gi; + 1}
such that

e i,jEN

* p(i),p(j) #0

o FEither p(i)/g;; or p(j)/gi; is even.

Proof:
Follows from Lemma . |

Corollary 4.3 Letn > 1.
1. W(a™2) =27 + 1.
2. W(az™;2) = (W(2";2)—1)a+1 = a2"+1. (This follows from Part 1 and Lemmal[2.5 )

Proof:
W(z"2) <27 41
Let p(x) = 2™ Leti =1, j = 2, and g = ged(1™,2") = 1. Since (1) 4,7 € N and (2)
p(j)/g = 2"/1 = 2™ is even (since n > 1), p(x),i,j satisfy the conditions of Theorem .
Hence
Wia™2)<1"4+2" —g+1=2"+1.

W(z";2) > 2" + 1. We present a proper 2-coloring of [2"]. Color the even numbers R and
the odd numbers B. Since 2" — 1 < 2", the only forbidden distance is 1. Hence this is a
proper coloring. |



Figure 1: In any (z?%; 3)-proper coloring, COL(z) = COL(x + 41)

5 Wiax?;3)=28a+1

In this section we show that W (z?; 3) = 29 and then W (ax?;3) < 28a + 1. We first show a
weaker theorem which will be a good warm-up to our work on 4-colorings in Section [7}

Theorem 5.1 W (z%3) < 1+ 412 = 1682.

Proof:

Assume, by way of contradiction, that COL is an (z?%;3)-proper coloring of [1 + 412].
We can assume COL(1) = R and COL(17) = B. By Figure [1] we know that COL(26) ¢
{R. B}, hence COL(26) = (/. Again, by Figure[l] we have that COL(42) ¢ {B, ('}, hence
COL(42) = R.

Note that we have shown that COL(1) = COL(42). More generally we have shown that,
for all z, COL(z) = COL(x + 41). Hence

COL(1) = COL(1 4+ 41) = COL(1 42 x 41) = - - - = COL(1 + 40 x 41) = COL(1 + 41?).
This contradicts COL being an (z%; 3)-proper coloring. |
The following theorem was proven independendly by Matt Jordan.
Theorem 5.2

1. W(x?%3) = 29.



2. For all a € Z, W(ax* 3) = 28a + 1. This follows from Part 1 and Lemma[2.5

Proof:

W(x?;3) < 29: Assume, by way of contradiction, that there exists COL, a proper 3-
coloring of [29].

By Figure [2, COL(10) = COL(17). By similar reasoning one can show that

(Vz)[10 < 2 <13 = COL(z) = COL(z + 7)].

We refer to this fact as FORCE.

Figure 2: In any proper (x?;3)-coloring, COL(10) = COL(17)

We can assume, without loss of generality, that COL(10) = R. Since 11 — 10 = 1* we
know that COL(11) # R. We can assume, without loss of generality, that COL(11) = B.
17: By FORCE, COL(17) = COL(10) = R
18: By FORCE, COL(18) = COL(11) = B.

1011112113 (1415|1617 18|19 20
R | B R | B

19: Since COL(10) = R and COL(18) = B, COL(19) =
12: By FORCE, COL(12) = COL(19) =

101111213 |14 |15|16 | 17|18 19|20
R | B R | B




20: Since COL(11) = B and COL(19) = (-, COL(20) = R.
13: By FORCE, COL(13) = COL(20) = R.

1011111211314 (15]16 17|18 |19 20
R | B R R | B R

Now we have that COL(17) = COL(13) = R. But 17 — 13 = 2%, This is a contradiction.

W (x?,3) > 29:
We present a proper 3-coloring of [28]:
11234 |5|6|7|8|9]10|11|12]13|14
B R R|B|B|B R | B B

15116 171181920 |21|22|23|24|25 |26 |27 |28
R|B|R|B R|B|R|B R R | B

Note 5.3 By Figure [2] we easily show W (2% 3) < 68: For 10 < x < 52 COL(z) = COL(z +
7), so

COL(10) = COL(17) = - -- = COL(59),
and note that 59 — 10 = 49 = 72. This result is not as strong as W (z?; 3) < 29; however, it

is a simpler proof and gives a better bound then the 1682 of Theorem

6 Upper Bounds on W(az? + bx;3)

Def 6.1

(a) A coloring of [n] has repeat distance r if x and z + r have the same color, for all
1<z <n-—r.

(b) A coloring of [n]| has repeat distance r under one-sided boundary condition b if x and
x + r have the same color, for all 1 <z <n —r —b.

(c) A coloring of [n]| has repeat distance r under two-sided boundary condition b if x and
x 4 r have the same color, forall b < x <n—1r —b.
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Lemma 6.2 In any proper 3-coloring of [n] with forbidden distances s,t,s + t, where 0 <
s <t:

(a) 2s +t is a repeat distance.
(b) t — s is a repeat distance under two-sided boundary condition s.

(c) 3s is a repeat distance under one-sided boundary condition t.

Proof: Let u=s++t.

(a) Consider a 3-coloring satisfying the conditions of the lemma. Let 1 <z <n—(2s+1t).
Without loss of generality, we can assume that x is £. Then x + s is not R, say B, and
x4u = (z+s)+t cannot be R or B so it must be (. Then (z+s)4+u = (z+u)+s cannot
be B or (7 so it must be . Since x and z+u+s are both R, (x+u+s)—z = u+s = 25+t
is a repeat distance,

(b) Consider a 3-coloring satisfying the conditions of the lemma. Let s < z < n—(t—s)—s.
Without loss of generality, we can assume that x is £. Then z — s is not R, say B, and
(x —s) +u= x4+t cannot be R or B so it must be (. Then (r —s)+t=(z+1t)—s
cannot be B or (-, so it must be [2. This process requires that xr —s > 0 and x +t < n.
So (z+t—s)—x=t—sis arepeat distance under two-sided boundary condition s.

(c) Take 2s + t from Part (a) and subtract ¢ — s from Part (b). The repeat distance is

(2s +t) — (t — s) = 3s. There is a one-sided boundary of size (t — s) + s =t from one
side of Part (b).

Lemma 6.3 Assume [w] has a proper 3-coloring where s is a forbidden distance and r is a
repeat distance under two-sided boundary condition b. If r|s then

w<s+20+1.

Proof:  Assume w > s+2b+ 1. Assume, without loss of generality, that b+ 1 is k. Then,
since r is a repeat distance, r +b+1,2r+b+1, ..., s+ b+ 1 are also R, since b+ 1 > b and
(s+b+1)+b=s+2b+1<n. But sis a forbidden distance so b+ 1 and s+ b+ 1 cannot
both be R. Contradiction. |

We give an example of using Lemma to get an upper bound on a set of poly Van der
Warden numbers. For one of them we have an exact value.
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Theorem 6.4
1. For a,b> 0 and alb, W(ax?® + bx;3) < 72b*/a + 1.
2. W(z*+;3) =T73.
Proof: 1) Let p(z) = ax? + bx. Let
r=>5b/a, y=6bla, z=28b/a.
Then
pr) = 30R/a,  ply) = 48/a,  ple) = T2/

Since p(z) + p(y) = p(z), by Lemma [6.2b, p(y) — p(z) = 12b*/a is a repeat distance under
two-sided boundary condition 306*/a. But p(3b/a) = 12b*/a is a forbidden distance. Thus,
by Lemma [6.3) W (az? + bx;3) < 12b%/a + 2 - 30b*/a + 1 = 72b?/a + 1.

2) By Part 1 W(z? + z;3) < 73. We show W (z? + z;3) > 73 by giving a (z* + z; 3)-proper
coloring of [72].

112134516 10111121314 ]15(16| 17|18
R|R RIR|\B|\B|R|R|B|B B | B

N
0]
Ne)

1912002112223 (24[125(26|27 2829|3031 32|33|34|35]|36
R|R R\R|B|B|R|R|B|B B | B

3713813940 |41 |42 431444546 |47 |48]49|50|51|52|53 |54

55 [ 56 | 57|58 59|60 |61 |62|63|64|65|66|67|68|69|70]|71]|72

7 Upper Bounds on W(z?% 4)

Recall that Figure |1| was the key to showing W (z?;3) < 1682. We now derive parameters
for a new figure that will be the key to an upper bound on W (xz?;4).
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We need to find a,b,c,d, e, f,z,y,z € Nt such that the following figure can be drawn:

Figure 3: In any (z?%;4)-proper coloring, COL(1) = COL(1 + w)

Hence we need to find solutions in N* to the following system of equations:
2+ a? = y?
22+ 0% =22
Y+ 2= 22
2+ d?=w
v 4+et=w
2+ fP=w

Each equation is a Pythagorean triple, for which we have a known formula with param-

eters k,m,n where m > n, and m,n are coprime but not both odd; we can use the Farey

sequence as an efficient algorithm to generate coprime pairs m,n. We used a computer
program and obtained the following:

Theorem 7.1 PW(4,2?%) < 1+ 290,085,280 = 84,149,474,894,213,522

Proof:

Assume, by way of contradiction, that COL is an (z%; 4)-proper coloring of [1+290,085,289?
By Figure [ we know that

COL(1) = COL(1 + 290,085,289%).

More generally we have shown that, for all x,
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112,529,665

260,273,690 290,085,290

171,819,665

Figure 4: In any (z?;4)-proper coloring, COL(1) = COL(1 + 290, 085, 290)

COL(z) = COL(z + 290,085,289?).

Hence

COL(1) = COL(L + 1 x 290,085,280) = - - - = COL(1 + 290,085,289?).
This contradicts COL being an (z%;4)-proper coloring. |

Note 7.2 The program used to find these bounds, and an explanation of that program, are
at https://github.com/zaprice/polyvdw

The actual value of W (z?%;4) is known to be 58 by the use of a SAT solver [2]. The bound
in Theorem is of course much worse, but the proof is very easy to verify.
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8 Open Problems

The over-arching open problem is to get better bounds for W (p(x); ) for a variety of p(x) €
Z[z] and ¢ € N using elementary methods (and not using a SAT Solver). In particular we
would like to see the following proven that way:

1. A better bound on W (z?%;4).
2. A bound on W(ax? + bx;4) that is a polynomial in |a| and |b|.
3. A reasonable bound on W (azz* + - - + ai; ).

A Some Exact Values of W(az? + bx;2)

Chart of W(p(z);2) for p(z) = az? + bz for 0 < a < 10 and —10 < b < 10.
The values for a,b > 0 were obtained from our formulas.

a
o 1 2 3 4 5 6 7 8 9 10
-10{21r 1 1 9 9 1 25 11 13 17 1
9119 19 1 7 &5 7 37 15 1 23
81 1 1 7 1 7 9 13 1 21 25
7117 5 5 211 1 19 61 29
613 1 1 1 5 9 1 17 21 25 73
5|1 1 5 13 7 1 15 49 25 29 31
419 1 1 5 1 13 17 23 25 33 37
S0 7 13 1 11 37 19 25 31 73 41
205 1 1 9 13 19 49 29 33 39 41
-1 3 1 7 25 17 21 27 61 37 41 47
b o1 5 9 13 17 21 25 29 33 37 41
1] 3 13 13 17 23 49 33 37 43 8 53
20 5 11 25 21 25 31 33 41 45 51 97
30 7 13 19 37 29 33 37 73 49 49 39
419 17 21 27 49 37 41 47 49 57 61
o111 25 25 29 35 61 45 49 55 97 61
6113 23 25 31 37 43 73 53 57 61 65
7115 25 31 49 41 45 51 8 61 65 71
8117 29 33 39 41 49 53 59 97 69 73
9119 37 37 37 47 73 55 61 67 109 77
10121 35 49 45 49 51 57 65 69 75 121
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The numbers tend to increase with increasing a and |b|. When a = b the values tend to
be large; this is because neither p(1)/g nor p(2)/g is even so W(p(z);2) = p(3) + 1, which is
somewhat larger than p(1) 4+ p(2) — g + 1 (the other possibility).

B Some Exact Values of W (az* + bx;3)

Chart of W (p(z);3) for p(z) = ax® + bz for 0 < a <5 and =5 < b < 5.
The values were obtained by computer.

a
0 1 2 3 4 )

116 1 64 61 217 1
4113 1 1 91 1 289
3110 1 10 1 135 171
207 1 1 68 97 171

-1 4 1 49 105 190 183

bl 0| 1 29 57 8 113 141

11 4 73 76 65 156 253
2| 7 64 145 123 151 ?
3110 37 95 217 ? ?
4113 65 127 7289 ?
5|16 55 7109 7 361

C Some Upper Bounds on W(z? + Bx;4)

We give bounds for W (z? + Bx;4). Each row of he table gives B, z,y, z,w (as in Figure [5),
and the bound. We have data for 0 < B < 2000; however, we only present data for
0 < B < 31 (we choose 31 since the 10 smallest values occur within 0 < B < 31) and
1980 < B < 2000 We choose 0 to 31 since the 10 smallest values occur within this range. We
choose 1980 to 2000 since after 2000 we ran into computational issues. There is a tendency
for larger B’s to lead to larger bounds (with one outlier) In particular:

1. The smallest upper bound occurs when B = 9. The next smallest when B = 3. The
ten smallest upper bounds occur when:
B =9,3,23,19,25,4,5,18,6, 31.

2. The largest upper bound occurs when B = 0 (this is the outlier). The next largest
when B = 1309. The ten largest upper bounds occur when:
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B =0,1309,743,1787,1171, 1727, 1386, 1847, 1993, 1877.

Figure 5: In any (g(z);4)-proper coloring, COL(1) = COL(1 + w)
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Table for 2 + Bx where 0 < B < 20.

g x y z w W(g();4) <
z2 10,608 | 13,108 | 16,133 | 290,085,289 | 84,149,474,894,213,522 (largest)
’+ 299 302 327 113,262 12,828,393,907
2%+ 22 91 127 211 257,463 66,287,711,296
%+ 3x 35 43 53 3,308 10,952,789 (2nd smallest)
r° + 4z 80 84 92 10,197 104,019,598 (6th smallest)
2% + 5z 70 81 100 11,250 126,618,751 (7th smallest)
2? + 62 70 86 106 13,232 175,165,217 (9th smallest)
2?2+ Tz 638 785 923 988,338 976,818,920,611
% + 8z 160 168 184 40,788 1,663,987,249
%+ 9x 35 37 44 3,242 10,539,743 (smallest)
2% + 10x 144 150 165 36,075 1,301,766,376
22+ 1l 364 472 727 | 1,263,252 1,595,819,511,277
2+ 122 140 172 212 52,928 2,802,008,321
22 + 13z 119 129 143 38,016 1,445,710,465
22 + 14x 66 96 135 25.395 645,261,556
22 + 152 120 138 215 54,364 2,956,259,957
2% + 162 75 99 141 45177 2,041,684,162
2%+ 17x 123 165 255 232,908 54,250,095,901
2% + 187 70 74 88 12,968 168,402,449 (8th smallest)
22 + 192 65 66 69 6,852 47,080,093 (4th smallest)
2% + 20x 84 96 115 24,261 589,081,342
22 + 21z 133 143 278 110,072 12,118,156,697
x? + 227 165 177 317 165,423 27,368,408,236
x? + 23z 42 45 49 3,858 14,972,899 (3rd smallest)
2?2 + 24x 165 195 229 69,457 4,825,941,818
x? + 257 17 20 42 9,300 86,722,501 (5th smallest)
22 + 262 114 150 286 105,192 11,068,091,857
22 + 27x 105 111 132 29,178 852,143,491
22 + 287 95 117 149 31,653 1,002,798,694
2% + 292 91 111 145 36,792 1,354,718,233
22 + 30z 51 75 115 60,550 3,668,119,001
2% + 3lx 39 60 96 14,922 223,128,667 (10th smallest)
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Table for 22 + Bz where 1980 < B < 2000.

g x y 2 w Wig(x);4) <
22+ 1,980 | 1,683 | 2,145 | 2,915 | 25,524,829 651,567,434,640,662
22+ 1,981z | 1,674 | 1,735 | 2,026 | 14,236,652 202,710,462,976,717
22+ 1,982 | 1,248 | 1,495 | 1,731 | 6,882,723 47,385,517,451,716
22+ 1,983z | 3,498 | 3,549 | 3,664 | 24,967,673 623,434,455,617,159
22+ 1984z | 860 | 975 | 2,585 | 12,424,497 154,392,775,905,058
22+ 1,985z | 867 | 1,098 | 2,365 | 11,200,200 125,466,712,437,001
22+ 1,986 | 1,000 | 2,432 | 2,908 | 19,712,552 388,623,355,480,077
22+ 1,987z | 3,048 | 3,393 | 3,987 | 39,165,018 1,533,976,455,831,091
22+ 1988z | 508 | 738 1,194 | 6,489,996 42,132,950,192,065
22+ 1,989z | 2,023 | 2,288 | 3,094 | 18,950,528 359,160,204,078,977
22+ 1,990z | 1,364 | 1,610 | 2,100 | 13,163,356 173,313,300,862,177
22+ 1,991z | 1,330 | 1,519 | 1,814 | 7,817,030 61,121,521,727,631
22+ 19922 | 975 | 1,065 | 1,871 | 10,120,498 102,444,639,800,021
22+ 1,993z | 1,985 | 2,349 | 4,373 | 68,596,488 | 4,705,614,878,734,729 (9th largest)
22+ 1,994z | 1,246 | 1,350 | 1,716 | 8,551,440 73,144,177 644,961
22+ 1,995z | 891 | 1,185 | 1,464 | 10,543,450 111,185,372,085,251
22+ 1,996z | 705 | 995 1,793 | 7,390,317 54,631,536,433,222
22+ 1,997z | 1,081 | 1,136 | 1,391 | 8,040,026 64,658,074,012,599
22+ 1,998z | 1,292 | 1,732 | 3,704 | 39,649,763 1,572,183,322,690,289
22+ 1,999z | 1,235 | 1,757 | 2,789 | 14,633,322 214,163,364,766,363
22 +2,000z | 184 | 280| 984 5,592,000 31,281,648,000,001
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D Some Upper Bounds on W (2z* + Bux; 4)

The search for upper bounds on W (222 + Bz;4) only worked for some values of B. We
present all 0 < B < 2000 for which B is odd and for which we found an upper bound on
W (222 + Bz;4).

g x y z w Wi(g(x);4) <
227 + bTx 3,969 | 4,035 | 4,295| 38,199,155 2,918,353,062,779,886
222 + 95z 707 | 758 | 1,008 | 14,365,633 412,744,475,029,699
222+ 171z | 11,907 | 12,105 | 12,885 | 343,792,395 | 236,336,480,508,171,596
202+ 285x | 2,121 | 2274 | 3,024 | 129,290,742 |  33,432,228,781,682,599
227 + 399z | 27,783 | 28,245 | 30,065 | 1,871,758,595 | 7,006,961,222 744,427 456
222 + 455z | 3,320 | 3,663 | 4,170 | 39,229,128 3,077,866,816,534,009
222+ bllz | 2,772 | 3,367 | 6,282 | 131,809,720 | 34,795,139,672,913,721
2272 + 627z | 43,659 | 44,385 | 47,245 | 4,622,097,755 | 5,834,090,064, 188,269,204
222 + 805z | 1,210 | 1,303 | 2,920 | 87,446,025 |  15,293,684,970,651,376
222 + 856z | 5,548 | 7,087 | 13,262 | 530,042,423 | 561,890,393,545,693,524
222+ 1,011z | 5,164 | 6,568 | 9,830 | 318,517,859 | 202,907,575,025,443,212
222 + 1,153z | 12,705 | 12,726 | 12,970 | 352,488,525 | 248,496,726,932,620,576
222+ 1,199z | 8,245 | 8,710 | 9,748 | 221,108,291 |  97,778,017,806,722,272
227 + 1,205z | 14,030 | 14,355 | 22,244 | 1,162,712,925 | 2,703,304,197,637,349,126
222 + 1,301z | 25,622 | 26,105 | 28,172 | 1,638,880,116 | 5,371,858,201,423,377,829
222 + 1,365z | 9,960 | 10,980 | 12,510 | 353,062,152 | 249,306,248,279,579,689
222+ 1459z | 954 | 1,174 | 1,379 | 58,465,486 6,836,511,407,576,467
222 + 1,545z | 11,298 | 11,815 | 12,860 | 425,440,418 | 361,999,755,841,475,259
222 + 1,685z | 10,695 | 10,068 | 11,570 | 289,144,125 | 167,209,137,251,881,876
222+ 1,753z | 3,586 | 5,236 | 8,232 | 181,067,394 |  66,224,583,947,144,155
222 + 1,851z | 50,031 | 51,441 | 55,164 | 6,379,649,159 | 7,612,882,297,751,201,408
222+ 1,913z | 2,261 | 3,366 | 5,324 | 81,424299 |  13,259,988,699,966,790
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E Some Upper Bounds on W (3z? + Bz;4)

The search for upper bounds on W (3z? + Bz;4) only worked for some values of B. We
present all 0 < B < 2000 for which B is not divisible by 3 and for which we found an upper

bound on W (3z? + Bx;4).

g x y z w Wi(g(x);4) <
322+ 42,273 | 42,660 | 43,375 | 5,738,872,934 | 6,570,267,294,984,419,923
322+ 143z | 13,244 | 13,332 | 13,442 | 554,651,696 | 922,915,590,942,221,777
322+ 1720 | 4452 | 4712 | 5180 | 83,862,311 |  23,689,546,233,099,656
322+ 200c | 1,896 | 2,204 | 5,004 | 115,177,723 | 39,797,746,661,938,733
322+ 235z | 11,165 | 11,270 | 11,610 | 533,594,418 | 1,021,747,471,306,964,403
322+ 274z | 9,322 | 11,610 | 16,903 | 1,125,018,929 | 3,797,003,080,080,107,670
322+ 344r | 8,004 | 9424 | 10,378 | 355,449,244 | 379,032,617,455,054,545
322+ 361c | 3,540 | 4,658 | 7,703 | 397,333,004 | 473,620,906,200,085,443
322+ 400z | 3,792 | 4,408 | 10,008 | 460,710,892 | 636,763,762,306,663,793
322+ 407z | 2,806 | 3,401 | 6,131 | 122,898,626 | 45,312,266,337,804,411
322+ 4120 | 2,077 | 2,829 | 5839 | 392,773,686 | 462,313,667,064,838,421
322+ 520x | 7,616 | 9,244 12716 | 515,261,395 | 796,483,183,467,963,476
322+ 556c | 9,400 | 9,408 | 9,451 | 273,674,799 | 224,693,838,986,259,443
302+ 592z | 15,744 | 16,472 | 17,944 | 994,061,387 | 2,964,474,711,857,432,412
322+ 643z | 50,932 | 51,357 | 52,351 | 8,273,167,696 | 2,421,731,687,255,606,001
322+ 688z | 17,808 | 18,848 | 20,756 | 1,421,796,976 | 6,064,520,901,084,553,217
322+ 725x | 3,172 | 3,185 | 3,278 | 34,869,750 3,647,723,675,756,251
322+ 728z | 16,744 | 17,360 | 18,928 | 1,174,742,491 | 4,140,060,615,695,188,692
322+ 797z | 2,847 | 3,082 | 3,524 | 148,007,272 |  66,520,245,642,541,737
3227+ 814x | 5,612 | 6,802 | 12,262 | 491,594,504 | 724,995,869,246,944,305
302+ 932r | 1,820 | 2,229 | 2,799 | 37,745,311 4,274,160,686,090,016
3227+ 1,085z | 1,100 | 1,344 | 1,540 | 10,401,450 324 581,771,880,751
322+ 1,087z | 9,800 | 9,909 | 11,434 | 604,108,526 | 1,094,841,990,223,645,791
322+ 1,112z | 18,800 | 18,816 | 18,902 | 1,094,699,196 | 3,595,100,206,474,645,201

F Acknowledgments

We thank Sean Prediville and Alex Rice for discussions about prior known upper bounds on

W (p(z);c). We thank Nathan Grammel for proofreading and discussions.

21




References

1]

V. Bergelson and A. Leibman. Polynomial extensions of van der Waerden’s and
Szemerédi’s theorems. Journal of the American Mathematical Society, 9:725-T753,
1996. http://www.math.ohio-state.edu/~vitaly/ or http://www.cs.umd.edu/
~gasarch/vdw/vdw.html.

B. Canakci, H. Christenson, R. Fleischman, N. McNabb, and D. Smolyak. On
SAT solvers and Ramsey-type numbers, 2015. https://www.cs.umd.edu/~gasarch/
reupapers/ramseyandsat.pdf.

H. Fiirstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi’s
on arithmetic progressions. Journal d’Analyse Mathematique, 31:204-256, 1977. http:
//www.cs.umd.edu/~gasarch/vdw/furstenbergsz.pdf.

W. Gowers. A new proof of Szemerédi’s theorem. Geometric and Functional Analysis,
11:465-588, 2001. http://www.dpmms.cam.ac.uk/~wtglO/papers/html or http://
www . springer.com/new+%26+forthcoming+titles+,28default’29/journal/493.

R. Graham, B. Rothschild, and J. Spencer. Ramsey Theory. Wiley, New York, 1990.

M. Harnel, N. Lyall, and A. Rice. Improved bounds on Sarkozy’s Theorem for quadratic
polynomials. International Math Research Notices, 8:1761-1782, 2013. Also see https:
//arxiv.org/abs/1111.5786.

B. Landman and A. Robertson. Ramsey Theory on the integers. AMS, Providence,
2004.

S. Peluse. Bounds for sets with no polynomial progressions, 2019. https://arxiv.
org/abs/1909.00309.

S. Peluse and S. Prendville. Quantitative bounds in the non-linear Roth theorem, 2019.
http://arxiv.org/abs/1903.02592.

J. Pintz, W. Steiger, and E. Szemerédi. On sets of natural numbers whose difference
set contains no squares. Journal of the London Mathematical Society, 37:219-231, 1988.
http://jlms.oxfordjournals.org/.

A. Rice. A maximal extension of the best-known bounds for the Furstenberg-Sarkozy
Theorem. Acta Arithmetica, pages 1-41, 2019. Also see http://arxiv.org/abs/1903.
02592.

22


http://www.math.ohio-state.edu/~vitaly/
http://www.cs.umd.edu/~gasarch/vdw/vdw.html
http://www.cs.umd.edu/~gasarch/vdw/vdw.html
https://www.cs.umd.edu/~gasarch/reupapers/ramseyandsat.pdf
https://www.cs.umd.edu/~gasarch/reupapers/ramseyandsat.pdf
http://www.cs.umd.edu/~gasarch/vdw/furstenbergsz.pdf
http://www.cs.umd.edu/~gasarch/vdw/furstenbergsz.pdf
http://www.dpmms.cam.ac.uk/~wtg10/papers/html
http://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/493
http://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/493
https://arxiv.org/abs/1111.5786
https://arxiv.org/abs/1111.5786
https://arxiv.org/abs/1909.00309
https://arxiv.org/abs/1909.00309
http://arxiv.org/abs/1903.02592
http://jlms.oxfordjournals.org/
http://arxiv.org/abs/1903.02592
http://arxiv.org/abs/1903.02592

[12]

[13]

[14]

[15]

[16]

[17]

A. Rice. Personal communication, 2019.

A. Sarkozy. On difference sets of sequences of integers 1. Acta Math. Sci. Hung.,
31:125-149, 1977. http://www.cs.umd.edu/~gasarch/vdw/sarkozyONE. pdf.

Shelah. A partition theorem. Scientiae Math Japonicae, 56:413-438, 2002. Paper 679
at the Shelah Archive: http://shelah.logic.at/short600.htmll

S. Shelah. Primitive recursive bounds for van der Waerden numbers. Journal of
the American Mathematical Society, 1:683-697, 1988. http://www.jstor.org/view/
08940347/d1963031/96p0024£ /0.

B. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk., 15:212—
216, 1927. This article is in Dutch and I cannot find it online.

M. Walters. Combinatorial proofs of the polynomial van der Waerden theorem and the
polynomial Hales-Jewett theorem. Journal of the London Mathematical Society, 61:1—
12, 2000. http://jlms.oxfordjournals.org/cgi/reprint/61/1/1 or http://jlms.
oxfordjournals.org/ or or http://www.cs.umd.edu/~gasarch/vdw/vdw.html.

23


http://www.cs.umd.edu/~gasarch/vdw/sarkozyONE.pdf
http://shelah.logic.at/short600.html
http://www.jstor.org/view/08940347/di963031/96p0024f/0
http://www.jstor.org/view/08940347/di963031/96p0024f/0
http://jlms.oxfordjournals.org/cgi/reprint/61/1/1
http://jlms.oxfordjournals.org/
http://jlms.oxfordjournals.org/
http://www.cs.umd.edu/~gasarch/vdw/vdw.html

	Introduction
	Preliminaries
	Linear polynomials
	Upper Bounds on W(p(x);2) for any p(x)Z[x]
	W(ax2;3)=28a+1
	Upper Bounds on W(ax2+bx;3)
	Upper Bounds on W(x2;4)
	Open Problems
	Some Exact Values of W(ax2+bx;2)
	Some Exact Values of W(ax2+bx;3)
	Some Upper Bounds on W(x2+Bx;4)
	Some Upper Bounds on W(2x2+Bx;4)
	Some Upper Bounds on W(3x2+Bx;4)
	Acknowledgments

