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0.0.1 If . . . then (b1, . . . , bn) is distinct-regular

We will prove the following theorem due to Rado [?, ?].

Theorem 0.0.1 If (b1, b2, . . . , bn) is regular and there exists λ1, . . . , λn dis-
tinct such that

∑n
i=1 λibi = 0 then (b1, . . . , bn) is distinct-regular.

To prove this we need a Key Lemma:

Key lemma

The lemma is in three parts. The first one we use to characterize which
vectors are distinct-regular. The second and third are used in a later section
when we prove the Full Rado Theorem.

The following definitions are used in the third part of the lemma.

Def 0.0.2 Let n ∈ N.

1. A set G ⊆ Nn is homogeneous if, for all α ∈ N,

(e1, . . . , en) ∈ G =⇒ (αe1, . . . , αen) ∈ G.

2. A set G ⊆ Nn is regular if, for all c, there exists R = R(G; c) such
that the following holds: For all c-colorings χ : [R] → [c] there exists
~e = (e1, . . . , en) ∈ G such that all of the ei’s are colored the same.

Example 0.0.3

1. Let G = {(a, a+ d, . . . , a+ (k − 1)d) | a, d ∈ N} be the set of k-APs in
N. G is homogeneous. By VDW, G is also regular.

2. Let b1, . . . , bn ∈ Z. Let G = {(e1, . . . , en) |
∑n

i=1 biei = 0}. G is
homogeneous. G is regular if and only if (b1, . . . , bn) is.

3. Let A be an m× n matrix. Let G = {~e | A~e = ~0}. G is homogeneous.
G is regular if and only if M is.

Lemma 0.0.4
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1. For all (b1, . . . , bn) ∈ Zn regular, for all c,M ∈ N, there exists L =
L(b1, . . . , bn; c,M) with the following property. For any c-coloring χ :
[L]→ [c] there exists e1, . . . , en, d ∈ [L] such that the following hold.

(a) b1e1 + · · ·+ bnen = 0.

(b) All of these numbers have the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md.

2. For all (b1, . . . , bn) ∈ Zn regular, for all c,M, s ∈ N, there exists L2 =
L2(b1, . . . , bn; c,M, s) with the following property. For any c-coloring
χ : [L2] → [c] there exists e1, . . . , en, d ∈ [L2] such that the following
hold.

(a) b1e1 + · · ·+ bnen = 0.

(b) All of these numbers have the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md

sd.

3. For all n ∈ N, for all G ⊆ Nn, G regular and homogeneous, for all
c,M, s ∈ N there exists L3 = L3(G; c,M, s) with the following property.
For any c-coloring χ : [L3] → [c] there exists e1, . . . , en, d ∈ [L3] such
that the following hold.

(a) (e1, . . . , en) ∈ G.

(b) All of these numbers have the same color:
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e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md

sd.

Proof: (Part 1)
Since b1, . . . , bn is regular, by Definition ?? there exists R = R(b1, . . . , bn; c)
such that for any c-coloring of [R] there exists e1, . . . , en such that
(1) all of the ei’s are the same color, and
(2)
∑n

i=1 biei = 0.
We will choose the desired number L later. Throughout the proof we will

add conditions to L. The first one is that R divides L.
Let χ:[L]→ [c] be a coloring.
We want to show that the conclusion of the theorem holds for χ.
We define a new coloring χ∗:[L/R]→ [c]R as follows:

χ∗(n) = (χ(n), χ(2n), χ(3n), . . . , χ(Rn)) .

In order to find an arithmetic progression, we will pick L so that L/R ≥
W (2X + 1, cR). We will determine X later.

Apply (a slight variant of) VDW to the cR-coloring χ to obtain the fol-
lowing: There exists a,D (but not our desired d) such that

χ∗(a−XD) = χ∗(a− (X − 1)D) = · · · = χ∗(a) = · · · = χ∗(a+XD).

Since we know

χ∗(n) = (χ(n), χ(2n), . . . , χ(Rn)) ,

this gives us

χ(a−XD) = χ(a− (X − 1)D) = · · · = χ(a) = · · · = χ(a+XD)
χ(2(a−XD)) = χ(2(a− (X − 1)D)) = · · · = χ(2a) = · · · = χ(2(a+XD))
χ(3(a−XD)) = χ(3(a− (X − 1)D)) = · · · = χ(3a) = · · · = χ(3(a+XD))

... =
... = · · · =

... = · · · =
...

χ(R(a−XD)) = χ(R(a− (X − 1)D)) = · · · = χ(Ra) = · · · = χ(R(a+XD)).
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We need a subset of these that are all the same color. Consider the
coloring χ∗∗:[R]→ [c] defined by

χ∗∗(n) = χ(na).

By the definition of R there exists f1, . . . , fn such that

1.
∑n

i=1 bifi = 0. Hence
∑n

i=1 bi(afi) = a
∑n

i=1 bifi = 0.

2. χ∗∗(f1) = χ∗∗(f2) = · · · = χ∗∗(fn).

By the definition of χ∗∗ we have

χ(af1) = χ(af2) = · · · = χ(afn).

Note that we have that the following are all the same color:

(a−XD)f1, (a− (X − 1)D)f1, · · · , af1, · · · , (a+XD)f1
(a−XD)f2, (a− (X − 1)D)f2, · · · , af2, · · · , (a+XD)f2
(a−XD)f3, (a− (X − 1)D)f3, · · · , af3, · · · , (a+XD)f3

...
...

...
...

(a−XD)fn, (a− (X − 1)D)fn, · · · , afn, · · · , (a+XD)fn.

For all i, 1 ≤ i ≤ n let ei = afi. We rewrite the above:

e1 − f1XD, e1 − f1(X − 1)D, · · · , e1, · · · , e1 + f1XD
e2 − f2XD, e2 − f2(X − 1)D, · · · , e2, · · · , e2 + f2XD
e3 − f3XD, e3 − f3(X − 1)D, · · · , e3, · · · , e3 + f3XD

...
...

...
...

en − fnXD, en − fn(X − 1)D, · · · , en, · · · , en + fnXD.

We are almost there — we have our e1, . . . , en that are the same color,
and lots of additive terms from them are also that color. We just need a
value of d such that

{d, 2d, 3d, . . . ,Md} ⊆ {f1D, 2f1D, 3f1D, . . . , Xf1D},
{d, 2d, 3d, . . . ,Md} ⊆ {f2D, 2f2D, 3f2D, . . . , Xf2D},

...
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{d, 2d, 3d, . . . ,Md} ⊆ {fnD, 2fnD, 3fnD, . . . , XfnD}.

We have no control over D, but we haven’t chosen X or d yet. We know
that, for all i, fi ≤ R. Clearly d = f1f2 · · · fnD ≤ RnD is a sensible choice,
so we use that.

We need, for every 1 ≤ i ≤ n,

{(
n∏

j=1

fi

)
D, 2

(
n∏

j=1

fi

)
D, . . . ,M

(
n∏

j=1

fi

)
D

}
⊆ {fiD, 2fiD, . . . , XfiD}.

Equivalently, we need

{(
n∏

j=1

fi

)
, 2

(
n∏

j=1

fi

)
, . . . ,M

(
n∏

j=1

fi

)}
⊆ {fi, 2fi, . . . , Xfi}.

Taking X = MRn−1 will suffice.
Since we have X = Rn−1M , we now know our bound for L:

L = R ·W (2Rn−1M + 1, cR), where R = R(b1, . . . , bn; c).

(Part 2)
We prove this by induction on c.
Base Case: For c = 1 this is easy; however, we find the actual bound
anyway. The only issue here is to make sure that the objects we want to
color are actually in [L(b1, . . . , bn; 1,M, s)]. Let (e1, . . . , en) ∈ Nn be a solu-
tion to

∑n
i=1 biei = 0 such that emin = min{e1, . . . , en} > M . Let emax =

max{e1, . . . , en} > M . Let L2 = L2(b1, . . . , bn; 1,M, s) = max{emax + M, s}.
Let χ:[L2] → [1]. We claim that e1, . . . , en, 1 work. Note that, for all i ∈ [n]
and j ∈ {−M, . . . ,M}, we have ei + j×1 ∈ [L2]. Also note that s×1 ∈ [L2].
Thus, taking d = 1, we have our solution.

Induction Hypothesis: We assume the theorem is true for c− 1 colors. In
particular, for any M ′, L2(b1, . . . , bn; c − 1,M ′, s) exists. This proof will be
similar to the proof of Lemma ??.

Induction Step: We want to show that L2(b1, . . . , bn; c,M, s) exists. We
show that there isM ′ so that, if you c-color [L] (where L = L(b1, . . . , bn; c,M ′)
from part 1), then there exists the required e1, . . . , en, d. The M ′ will depend
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on L2 for c − 1 colors. Let χ be a c-coloring of [L]. By part 1 there exists
E1, . . . , En, D such that

∑n
i=1 biEi = 0 and the following are all the same

color, which we will call RED.

E1 −M ′D, . . . , E1 −D, E1, E1 +D, . . . , E1 +M ′D
E2 −M ′D, . . . , E2 −D, E2, E2 +D, . . . , E2 +M ′D

...
...

...
...

...
...

...
En −M ′D, . . . , En −D, En, En +D, . . . , En +M ′D.

There are now several cases.

Case 1: If sD is RED then we are done so long as M ′ ≥M . Use d = D.

Case 2: If 2sD is RED then we are done so long as M ′ ≥ 2M . Use d = 2D.
...

Case X: If XsD is RED then so long as M ′ ≥ MX we are done. Use
d = XD.

Case X+1: None of the above cases hold. Hence

sD, 2sD, . . . , XsD

are all not RED. Hence the coloring restricted to this set is a c− 1 coloring.
Let X = L2(b1, . . . , bn; c − 1,M, s), and M ′ = MX. Consider the (c − 1)-
coloring χ∗ of [M ′] defined by

χ∗(x) = χ(xsD).

By the induction hypothesis and the definition of M ′ there exists e1, . . . , en, d
such that

∑n
i=1 biei = 0 and all of the following are the same color under χ∗:

e1 −Md, e1 − (M − 1)d, . . . , e1, . . . , e1 +Md
e2 −Md, e2 − (M − 1)d, . . . , e2, . . . , e2 +Md

...
...

...
...

en −Md, en − (M − 1)d, . . . , en, . . . , en +Md

sd.

By the definition of χ∗, the following have the same color via χ:



7

(e1 −Md)sD, (e1 − (M − 1)d)sD, . . . , e1sD, . . . , (e1 +Md)sD
(e2 −Md)sD, (e2 − (M − 1)d)sD, . . . , e2sD, . . . , (e2 +Md)sD

...
...

...
...

(en −Md)sD, (en − (M − 1)d)sD, . . . , ensD, . . . , (en +Md)sD

sdsD.

By taking the vector (e1sD, . . . , ensD) and common difference sdD, we
obtain the result.

(Part 3)
In both of the above parts, the only property of the set{

(x1, . . . , xn)

∣∣∣∣∣
n∑

i=1

bixi = 0

}

that we used is that it was homogeneous and regular. Hence all of the proofs
go through without any change and we obtain this part of the lemma.

Back to our Story

Theorem 0.0.5 If (b1, . . . , bn) is regular and there exists (λ1, . . . , λn) such
that

∑n
i=1 λibi = 0 and all of the λi are distinct, then (b1, . . . , bn) is distinct-

regular.

Proof: LetM be a parameter to be picked later. Let L = L(b1, . . . , bn; c,M)
from part 1 of Lemma 0.0.4. Let χ be a c-coloring of [L]. We know that there
exists e1, . . . , en, d ∈ [L] such that the following occur.

1. b1e1 + · · ·+ bnen = 0.

2. The following are the same color:

e1 −Md, . . . , e1 − d, e1, e1 + d, . . . , e1 +Md
e2 −Md, . . . , e2 − d, e2, e2 + d, . . . , e2 +Md

...
...

...
...

...
en −Md, . . . , en − d, en, en + d, . . . , en +Md.
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Let A ∈ Z be a constant to be picked later. Note that

n∑
i=1

bi(ei + Adλi) =

(
n∑

i=1

biei

)
+

(
Ad

n∑
i=1

biλi

)
= 0.

Thus (e1+Adλ1, . . . , en+Adλn) is a solution. For it to be monochromatic,
we need M to be such that there exists an A with

1. e1 + Adλ1, . . ., en + Adλn are all distinct, and

2. For all i, |Aλi| ≤M .

Since λi 6= λj, there is at most 1 value of A which makes ei + Adλi =
ej + Adλj — viewing this condition as a linear equation in A. Therefore,
there are at most

(
n
2

)
values of A which make item 1 false.

In order to satisfy item 2 we need, for all i, |A| ≤ M/|λi|. Let λ =
max{|λ1|, . . . , |λn|}. We let M =

(
n
2

)
λ. Any choice of A with |A| ≤

(
n
2

)
will

satisfy condition 2. There are more than
(
n
2

)
values of A that satisfy this,

hence we can find a value of A one that satisfies items 1 and 2.

Exercise 1 (Open-ended)

a) Consider the equation 10x1 + 13x2 − 40x3 = 0. By Theorem ?? there
is a 40-coloring of N such that there is no monochromatic solution.
Exercise ?? gives a 6-coloring with the same property, but we do not
know whether it is best. Find the value of c such that

• There is a c-coloring of N such that 10x1 + 13x2 − 40x3 = 0 has
no monochromatic solution.

• For every c−1-coloring of N there is a monochromatic solution to
10x1 + 13x2 − 40x3 = 0.

b) We define (b1, . . . , bn) be be c-regular if, for every c-coloring of N, there
is a monochromatic solution to

∑n
i=1 bixi = 0. Find some condition X

such that, for all (b1, . . . , bn) and c, (b1, . . . , bn) is c-regular iff X.

c) Define c-distinct-regular in the analogous way. Repeat the problem
above with that notion of c-distinct regular.


