0.0.1 If... then (by,...,b,) is distinct-regular

We will prove the following theorem due to Rado [?, 7].

Theorem 0.0.1 If (by,bs,...,b,) is reqular and there exists Ay, ..., \, dis-
tinct such that > | \;b; = 0 then (by,...,by,) is distinct-regular.

To prove this we need a Key Lemma:

Key lemma

The lemma is in three parts. The first one we use to characterize which
vectors are distinct-regular. The second and third are used in a later section
when we prove the Full Rado Theorem.

The following definitions are used in the third part of the lemma.

Def 0.0.2 Let n € N.

1. A set G C N" is homogeneous if, for all a € N,

(€1,...,en) € G = (aeq,...,ae,) €G.

2. A set G C N" is reqular if, for all ¢, there exists R = R(G;c) such
that the following holds: For all c-colorings x:[R] — [¢] there exists
€= (ey,...,e,) € G such that all of the e;’s are colored the same.

Example 0.0.3

1. Let G ={(a,a+d,...,a+ (k—1)d) | a,d € N} be the set of k-APs in
N. G is homogeneous. By VDW, G is also regular.

2. Let by,...,b, € Z. Let G = {(e1,...,es) | Do bie; = 0}, G is
homogeneous. G is regular if and only if (by,...,b,) is.

3. Let A be an m x n matrix. Let G = {¢| AZ=0}. G is homogeneous.
G is regular if and only if M is.

Lemma 0.0.4



1. For all (by,...,b,) € Z" reqular, for all ¢, M € N, there exists L =
L(by,...,by; ¢, M) with the following property. For any c-coloring x:
[L] — [c] there exists ey, ..., en,d € [L] such that the following hold.

(a) brey + -+ + bpe, = 0.

(b) All of these numbers have the same color:

el—Md, cey el—d, €1, €1+d, ey €1+Md
GQ—Md, ce 62—d, €2, €2+d, ceey €2+Md
e, —Md, ..., e,—d, e, e,+d, ..., e,+ Md.

2. For all (by,...,b,) € Z™ regular, for all ¢, M,s € N, there exists Ly =
Lo(by, ..., by;c, M, s) with the following property. For any c-coloring
X:[La] — [c] there exists eq,...,en,d € [Lo] such that the following
hold.

(a) byeg + -+ + bpe, = 0.

(b) All of these numbers have the same color:

61—Md, e 61—d, €1, €1+d, e €1+Md

62—Md, ey Gg—d, €9, 62+d, ey 62+Md

e, —Md, ..., e,—d, e, e,+d, ..., e,+ Md
sd.

3. For alln € N, for all G C N*, G regular and homogeneous, for all
¢, M, s € N there exists Ly = L3(G; ¢, M, s) with the following property.
For any c-coloring x:[L3] — |[c| there ezists ey, ... ey, d € [L3] such
that the following hold.

(a) (e1,...,e,) €G.

(b) All of these numbers have the same color:



61—Md, ceey 61—d, €1, 61+d, ceey €1+Md

62—Md, ceey 62—d, €9, €2+d, ceey €2+Md

e,—Md, ..., e,—d, e, e,+d, ..., e,+ Md
sd.

Proof: (Part 1)
Since by, ..., b, is regular, by Definition 7?7 there exists R = R(b1,...,b,;¢)
such that for any c-coloring of [R] there exists ey, ..., e, such that
(1) all of the e;’s are the same color, and
(2) iy biei = 0.

We will choose the desired number L later. Throughout the proof we will
add conditions to L. The first one is that R divides L.

Let x:[L] — [c] be a coloring.

We want to show that the conclusion of the theorem holds for y.

We define a new coloring x*:[L/R] — [c]® as follows:

X" (n) = (x(n), x(2n), x(3n), ..., x(Rn))

In order to find an arithmetic progression, we will pick L so that L/R >
W(2X +1,cf"). We will determine X later.

Apply (a slight variant of) VDW to the c*-coloring x to obtain the fol-
lowing: There exists a, D (but not our desired d) such that

X'(a=XD)=x"(a—(X-=1)D)=---=x"(a)=---=x"(a+ XD).

Since we know

xX(le—XD) = x(a—(X-1)D) = = x(a) = =
X(2(a = XD)) X(2(a— (X —=1)D)) X(2a) =
X@B(a=XD)) = x@B(a—(X-1)D)) = = Xl

(a+ XD)
(a+ XD))
(a+ XD))

—~
CAD[\D><

X(R(a —I— XD)).



We need a subset of these that are all the same color. Consider the
coloring x**:[R] — [¢| defined by

X" (n) = x(na).
By the definition of R there exists fi,..., f, such that

1> bifi=0. Hence Y7 bi(af;) =ad ;. bif; =0.

2. X*(f1) = x"(f2) = - = X" (fo)-
By the definition of x** we have
x(afi) = x(afs) = - = x(afy).

Note that we have that the following are all the same color:

(a—XD)f1, (a—(X-1)D)fr, ---, afr, -+, (a+XD)fy
(a— XD)fo, (a— (X —1)D)for - afe, - (atXD)f
(a— XDVfs (a— (X —1)D)fs - afs . (atXD)f
(a—XD)fn. (a—(X—1)D)fu, - afs, -, (a+XD)fu

For all 4, 1 <1 < n let e; = af;. We rewrite the above:

e1— fiXD, er— fi(X=1)D, ---, e, -+, e+ fiXD
ea — foXD, es— fo(X —=1)D, -+, ey -+, e+ foXD
es— f[3XD, es— fs(X —=1)D, ---, e3, --+, e3+ fsXD
en— fuXD, e, — (X =1)D, -+, e, -+, e+ [uXD.
We are almost there — we have our ey, ..., e, that are the same color,

and lots of additive terms from them are also that color. We just need a
value of d such that

{d,2d,3d,...,Md} C {f,D,2f,D,3f,D, ..., X f,D},
{d,2d,3d,...,Md} C {f,D,2f,D,3f,D,..., X 2D},



{d,2d,3d,...,Md} C {f.D,2f,D,3f.D, ..., X f.D}.

We have no control over D, but we haven’t chosen X or d yet. We know
that, for all ¢, f; < R. Clearly d = fifs--- fuD < R"D is a sensible choice,
so we use that.

We need, for every 1 < i <mn,

{(ﬁﬂ) D> (ﬁfi) Y (ﬁﬂ) D} C{AD2£D, - XfD)

j=1

Equivalently, we need

Taking X = MR"! will suffice.
Since we have X = R" ' M, we now know our bound for L:

L=R-WQE2R" M +1,c"), where R = R(by, ..., by;c).

(Part 2)

We prove this by induction on c.

Base Case: For ¢ = 1 this is easy; however, we find the actual bound
anyway. The only issue here is to make sure that the objects we want to
color are actually in [L(by,...,by;1, M, s)]. Let (eq,...,e,) € N* be a solu-
tion to >, bie; = 0 such that ey, = min{er, ... e} > M. Let epax =
max{ey,...,e,} > M. Let Ly = Lo(by,...,by; 1, M, s) = max{ena.x + M, s}.
Let x:[Lo] — [1]. We claim that ey, ..., e,, 1 work. Note that, for all i € [n]
and j € {—M,..., M}, we have ¢; +j x 1 € [Ls]. Also note that s x 1 € [Lo].
Thus, taking d = 1, we have our solution.

Induction Hypothesis: We assume the theorem is true for ¢ — 1 colors. In
particular, for any M’, La(by,...,by;c— 1, M’ s) exists. This proof will be
similar to the proof of Lemma ?7?.

Induction Step: We want to show that La(by, ..., b,;c, M, s) exists. We
show that there is M’ so that, if you c-color [L] (where L = L(by, ..., by;¢c, M")
from part 1), then there exists the required ey, ..., e,,d. The M’ will depend



on Ly for ¢ — 1 colors. Let x be a c-coloring of [L]. By part 1 there exists
Ey,....E,, D such that >  b;E; = 0 and the following are all the same
color, which we will call RED.

E\—MD, ..., BE,—D, E\, By+D, ..., Ey+M'D
Ey—MD, ..., By—D, By, Ey+D, ..., Ey+MD
E,-MD, ..., E,—D, E, E,+D, ..., E,+MD.

There are now several cases.
Case 1: If sD is RED then we are done so long as M’ > M. Use d = D.
Case 2: If 2sD is RED then we are done so long as M’ > 2M. Use d = 2D.

Case X: If XsD is RED then so long as M’ > MX we are done. Use
d=XD.

Case X+1: None of the above cases hold. Hence

sD,2sD,..., XsD

are all not RED. Hence the coloring restricted to this set is a ¢ — 1 coloring.
Let X = Lo(by,...,bp;c— 1, M,s), and M’ = MX. Consider the (¢ — 1)-
coloring x* of [M’] defined by

X" (x) = x(zsD).

By the induction hypothesis and the definition of M’ there exists eq, ..., e,,d
such that > " | b;e; = 0 and all of the following are the same color under y*:

61—Md, 61—<M—1>d, ey €1, 0., €1+Md

GQ_Md7 62—(M—1)d, sy €Eoy Ll 62+Md

en— Md, e,— (M —1)d, ..., ey, ..., e,+ Md
sd.

By the definition of x*, the following have the same color via y:



(e, — Md)sD, (eg — (M —1)d)sD, ..., esD, ..., (e + Md)sD
(e — Md)sD, (e;— (M —1)d)sD, ..., essD, ..., (ex+ Md)sD
(e, — Md)sD, (e, — (M —1)d)sD, ..., e,sD, ..., (e,+ Md)sD
sdsD.
By taking the vector (e;sD, ..., e,sD) and common difference sdD, we
obtain the result.
(Part 3)

In both of the above parts, the only property of the set

{(xl,...,mn) szxz = O}

that we used is that it was homogeneous and regular. Hence all of the proofs
go through without any change and we obtain this part of the lemma. |

Back to our Story

Theorem 0.0.5 If (by,...,b,) is reqgular and there exists (A1,...,\,) such
that Y r  A\ib; = 0 and all of the \; are distinct, then (b, ..., b,) is distinct-
reqular.

Proof:  Let M be a parameter to be picked later. Let L = L(by, ..., b,; ¢, M)
from part 1 of Lemma 0.0.4. Let x be a c-coloring of [L]. We know that there
exists e, ..., e,,d € [L] such that the following occur.

1. b1€1—|—"'+bn€n:O.

2. The following are the same color:

61—Md, ey el—d, €1, 61—|—d, ey 61—|—Md
GQ—Md, ey Gg—d, €9, €2+d, ey €2+Md

en—Md, ..., e,—d, e,, e,+d, ..., e,+ Md.



Let A € Z be a constant to be picked later. Note that

Zb ei + Ad\;) (Zbel> + (Adibi/\i> =0
=1

Thus (e;+AdAg, . .., e,+Ad),) is a solution. For it to be monochromatic,
we need M to be such that there exists an A with

1. e + Ad)\y, ..., e, + Ad)\, are all distinct, and
2. For all i, |[AN;| < M.

Since A; # JAj, there is at most 1 value of A which makes e; + Ad\; =
e; + Ad\; — viewing this condition as a linear equation in A. Therefore,
there are at most (g) values of A which make item 1 false.

In order to satisfy item 2 we need, for all i, |[A] < M/|N]|. Let A =
max{|A1],...,[A.|}. Welet M = (})\. Any choice of A with [A] < (}) will
satisfy condition 2. There are more than (2‘) values of A that satisfy this,
hence we can find a value of A one that satisfies items 1 and 2. |

Exercise 1 (Open-ended)

a) Consider the equation 10x; + 13z9 — 4023 = 0. By Theorem ?? there
is a 40-coloring of N such that there is no monochromatic solution.
Exercise 77 gives a 6-coloring with the same property, but we do not
know whether it is best. Find the value of ¢ such that

e There is a c-coloring of N such that 10x; + 13x9 — 4023 = 0 has
no monochromatic solution.

e For every ¢ — 1-coloring of N there is a monochromatic solution to
105E1 + 13272 — 40273 = 0.

b) We define (by,...,b,) be be c-regular if, for every c-coloring of N, there
is a monochromatic solution to Z?:l b;x; = 0. Find some condition X
such that, for all (by,...,b,) and ¢, (by,...,b,) is c-regular iff X.

c¢) Define c-distinct-regular in the analogous way. Repeat the problem
above with that notion of c-distinct regular.



