Rado's Thm

Exposition by William Gasarch

July 25, 2024

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
▶ COL $(x) = \text{COL}(y) = \text{COL}(z)$

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st

- $ightharpoonup \operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(z)$
- $\triangleright x + y = z$

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st

- $ightharpoonup \operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(z)$
- $\triangleright x + y = z$

We proved using Ramsey's Thm.

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st

- $ightharpoonup \operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(z)$
- $\triangleright x + y = z$

We proved using Ramsey's Thm.

What about other equations?

Def Let $E(x_1,...,x_n)$ be an equation (e.g., x + y = z).

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). Let $R, c \in \mathbb{N}$.

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). Let $R, c \in \mathbb{N}$. Let $COL: [R] \rightarrow [c]$.

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in [R], (d_1, \ldots, d_n) such that

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z).

Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in [R], (d_1, \ldots, d_n) such that

1) d_1, \ldots, d_n are all the same color.

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z).

Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in $[R], (d_1, \ldots, d_n)$ such that

- 1) d_1, \ldots, d_n are all the same color.
- 2) $E(d_1, \ldots, d_n)$ is true.

Def Let $E(x_1,...,x_n)$ be an equation (e.g., x + y = z).

Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in [R], (d_1, \ldots, d_n) such that

- 1) d_1, \ldots, d_n are all the same color.
- 2) $E(d_1, \ldots, d_n)$ is true.

A distinct monochromatic solution (d-mono sol) is a mono sol where all of the elements are different.

Def Let $E(x_1,...,x_n)$ be an equation (e.g., x + y = z).

Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in [R], (d_1, \ldots, d_n) such that

- 1) d_1, \ldots, d_n are all the same color.
- 2) $E(d_1, \ldots, d_n)$ is true.

A distinct monochromatic solution (d-mono sol) is a mono sol where all of the elements are different.

We can restate Schur's Thm

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z).

Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in [R], (d_1, \ldots, d_n) such that

- 1) d_1, \ldots, d_n are all the same color.
- 2) $E(d_1, \ldots, d_n)$ is true.

A distinct monochromatic solution (d-mono sol) is a mono sol where all of the elements are different.

We can restate Schur's Thm Thm $(\forall c)(\exists S = S(c))$ st \forall COL : $[S] \rightarrow [c]$ there is a mono sol to x + y = z.

Def Let $E(x_1,...,x_n)$ be an equation (e.g., x + y = z).

Let $R, c \in \mathbb{N}$.

Let COL: $[R] \rightarrow [c]$.

A monochromatic solution (mono sol) is a tuple of numbers in [R], (d_1, \ldots, d_n) such that

- 1) d_1, \ldots, d_n are all the same color.
- 2) $E(d_1, \ldots, d_n)$ is true.

A distinct monochromatic solution (d-mono sol) is a mono sol where all of the elements are different.

We can restate Schur's Thm

Thm $(\forall c)(\exists S = S(c))$ st \forall COL : $[S] \rightarrow [c]$ there is a mono sol to x + y = z.

(We can modify the proof to get a d-mono sol.)

Def Let $E(x_1,...,x_n)$ be an equation (e.g., x+y=z). E is **regular** if the following is true:

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). E is **regular** if the following is true:

 $(\forall c \in \mathbb{N})(\exists R \in \mathbb{N}) \ \forall \ \mathrm{COL} \colon [R] \rightarrow [c] \ \mathrm{there} \ \mathrm{is} \ \mathrm{a} \ \mathrm{mono} \ \mathrm{sol}.$

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). E is **regular** if the following is true:

 $(\forall c \in \mathbb{N})(\exists R \in \mathbb{N}) \ \forall \ \mathrm{COL} \colon [R] \rightarrow [c] \ \mathrm{there} \ \mathrm{is} \ \mathrm{a} \ \mathrm{mono} \ \mathrm{sol}.$

One can define d-regular with d-mono sol.

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). E is **regular** if the following is true:

 $(\forall c \in \mathbb{N})(\exists R \in \mathbb{N}) \ \forall \ \mathrm{COL} \colon [R] \rightarrow [c] \ \mathrm{there} \ \mathrm{is} \ \mathrm{a} \ \mathrm{mono} \ \mathrm{sol}.$

One can define d-regular with d-mono sol.

We can restate Schur's Thm

Def Let $E(x_1, ..., x_n)$ be an equation (e.g., x + y = z). E is **regular** if the following is true:

 $(\forall c \in \mathbb{N})(\exists R \in \mathbb{N}) \ \forall \ \mathrm{COL} \colon [R] \rightarrow [c] \ \mathrm{there} \ \mathrm{is} \ \mathrm{a} \ \mathrm{mono} \ \mathrm{sol}.$

One can define d-regular with d-mono sol.

We can restate Schur's Thm x+y=z is regular. (Can also show d-regular.)

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is regular.

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is regular.

This is a stupid thm.

$$2w + 3x = 5y$$

Thm
$$2w + 3x = 5y$$
 is regular.

This is a stupid thm.

Take
$$x = y = z = 1$$
. Or any $x = y = z$.

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later.

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later.

 $\exists W \text{ for all } COL[W] \rightarrow [c] \exists a, d$

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $COL[W] \rightarrow [c] \exists a, d$

 $a, a + d, \dots, a + (k - 1)d$ are all the same color

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \; \exists a, d$

 $a, a + d, \dots, a + (k-1)d$ are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \; \exists a, d$

$$a, a + d, \dots, a + (k - 1)d$$
 are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set w = a + Wd

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \; \exists a, d$

$$a, a + d, \dots, a + (k - 1)d$$
 are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set w = a + Wd x = a + Xd

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \; \exists a, d$

$$a, a + d, \dots, a + (k - 1)d$$
 are all the same color

We pick
$$0 \le W, X, Y \le k$$
 distinct later and then set $w = a + Wd$ $x = a + Xd$ $y = a + Yd$

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \; \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set w = a + Wd x = a + Xd y = a + Yd Good News: COL(w) = COL(x) = COL(y).

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $COL[W] \rightarrow [c] \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set w = a + Wd x = a + Xd y = a + Yd Good News: COL(w) = COL(x) = COL(y). Want

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \; \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set w = a + Wd x = a + Xd y = a + Yd Good News: COL(w) = COL(x) = COL(y). Want

$$2w + 3x = 5y$$

Thm 2w + 3x = 5y is d-regular.

Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $COL[W] \rightarrow [c] \exists a, d$

$$a, a + d, \dots, a + (k-1)d$$
 are all the same color

We pick $0 \le W, X, Y \le k$ distinct later and then set w = a + Wd x = a + Xd y = a + Yd**Good News:** COL(w) = COL(x) = COL(y).

$$2w + 3x = 5y$$

$$2(a + Wd) + 3(a + Xd) = 5(a + Yd)$$

$$2w + 3x = 5y$$

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ **WOW** all of the a's Drop out!

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ **WOW** all of the a's Drop out!
 $2Wd + 3Xd = 5Yd$

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ **WOW** all of the a's Drop out!
 $2Wd + 3Xd = 5Yd$ **WOW** all of the d's Drop out!

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ WOW all of the a's Drop out!
 $2Wd + 3Xd = 5Yd$ WOW all of the d's Drop out!
 $2W + 3X = 5Y$

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ WOW all of the a's Drop out!
 $2Wd + 3Xd = 5Yd$ WOW all of the d's Drop out!
 $2W + 3X = 5Y$
Could do $W = 1$, $X = 1$, $Y = 1$.

Want

$$2w + 3x = 5y$$

$$2(a + Wd) + 3(a + Xd) = 5(a + Yd)$$

$$2a + 2Wd + 3a + 3Xd = 5a + 5Y$$
 WOW all of the a's Drop out!
$$2Wd + 3Xd = 5Yd$$
 WOW all of the d's Drop out!
$$2W + 3X = 5Y$$

Could do W = 1, X = 1, Y = 1. But this causes x = y = z.

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ WOW all of the a's Drop out!
 $2Wd + 3Xd = 5Yd$ WOW all of the d's Drop out!
 $2W + 3X = 5Y$
Could do $W = 1$, $X = 1$, $Y = 1$. But this causes $x = y = z$.
Will do $W = 0$, $X = 5$, $Y = 3$.

Want

$$2w + 3x = 5y$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Y$ WOW all of the a's Drop out!
 $2Wd + 3Xd = 5Yd$ WOW all of the d's Drop out!
 $2W + 3X = 5Y$
Could do $W = 1$, $X = 1$, $Y = 1$. But this causes $x = y = z$.
Will do $W = 0$, $X = 5$, $Y = 3$.

So get x = a x = a + 5d y = a + 3d.

Thm 2w + 3x = 5y is d-regular.

Thm 2w + 3x = 5y is d-regular. Given c, let R = R(c) = W(6, c).

```
Thm 2w + 3x = 5y is d-regular.
Given c, let R = R(c) = W(6, c).
COL: [R] \rightarrow [c].
```

```
Thm 2w + 3x = 5y is d-regular.

Given c, let R = R(c) = W(6, c).

COL : [R] \rightarrow [c].

By VDW \exists a, d, COL(a) = COL(a + d) = \cdots = COL(a + 5d).
```

```
Thm 2w + 3x = 5y is d-regular.

Given c, let R = R(c) = W(6, c).

COL : [R] \rightarrow [c].

By VDW \exists a, d, COL(a) = COL(a + d) = \cdots = COL(a + 5d).

w = a x = a + 5d y = a + 3d
```

Thm
$$2w + 3x = 5y$$
 is d-regular.
Given c , let $R = R(c) = W(6, c)$.
 $COL : [R] \rightarrow [c]$.
By VDW $\exists a, d$, $COL(a) = COL(a + d) = \cdots = COL(a + 5d)$.
 $w = a$ $x = a + 5d$ $y = a + 3d$
 $COL(a + d) = COL(a + 5d) = COL(a + 3d)$

Thm
$$2w + 3x = 5y$$
 is d-regular.
Given c , let $R = R(c) = W(6, c)$.
 $COL : [R] \rightarrow [c]$.
By VDW $\exists a, d$, $COL(a) = COL(a+d) = \cdots = COL(a+5d)$.
 $w = a$ $x = a+5d$ $y = a+3d$
 $COL(a+d) = COL(a+5d) = COL(a+3d)$
 $2(a) + 3(a+5d) = 5(a+3d)$

```
Thm 2w + 3x = 5y is d-regular.
Given c, let R = R(c) = W(6, c).
COL: [R] \rightarrow [c].
By VDW \exists a, d, COL(a) = COL(a+d) = \cdots = COL(a+5d).
             w = a x = a + 5d y = a + 3d
COL(a+d) = COL(a+5d) = COL(a+3d)
2(a) + 3(a + 5d) = 5(a + 3d)
Done!
```

$$2w + 3x = 5y$$

$$2w + 3x = 5y$$

Set $w = a + Wd$, $x = a + Xd$, $y = a + Yd$ and the a's dropped out.

$$2w + 3x = 5y$$

Set w = a + Wd, x = a + Xd, y = a + Yd and the a's dropped out.

Then all the d's dropped out so we go equation in just W, X, Y.

$$2w + 3x = 5y$$

Set w = a + Wd, x = a + Xd, y = a + Yd and the a's dropped out.

Then all the d's dropped out so we go equation in just W, X, Y.

What is it about

$$2w + 3x = 5y$$

that made all of the a's drop out? Discuss.

The key to 2w + 3x = 5y is that 2 + 3 = 5.

The key to 2w + 3x = 5y is that 2 + 3 = 5. Can phrase as 2w + 3x - 5y = 0 and say sum of coefficients is 0.

The key to 2w + 3x = 5y is that 2 + 3 = 5. Can phrase as 2w + 3x - 5y = 0 and say sum of coefficients is 0.

Thm Let $a_1, \ldots, a_m \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathbb{N}$ be st $\sum_{i=1}^m a_i = \sum_{i=1}^n b_i$. Then

The key to 2w + 3x = 5y is that 2 + 3 = 5. Can phrase as 2w + 3x - 5y = 0 and say sum of coefficients is 0.

Thm Let
$$a_1, \ldots, a_m \in \mathbb{N}$$
 and $b_1, \ldots, b_n \in \mathbb{N}$ be st $\sum_{i=1}^m a_i = \sum_{i=1}^n b_i$. Then $\sum_{i=1}^m a_i x_i = \sum_{i=1}^n b_i y_i$ is d-regular. (One exception: $x = y$.)

The key to 2w + 3x = 5y is that 2 + 3 = 5. Can phrase as 2w + 3x - 5y = 0 and say sum of coefficients is 0.

Thm Let $a_1, \ldots, a_m \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathbb{N}$ be st $\sum_{i=1}^m a_i = \sum_{i=1}^n b_i$. Then $\sum_{i=1}^m a_i x_i = \sum_{i=1}^n b_i y_i$ is d-regular. (One exception: x = y.)

We won't prove this but you have seen most of the ideas needed to prove it.

Other Equations

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is d-regular.

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$.Use VDW's thm with c and with k we pick later.

2w + 3x = 5y + z

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$.Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a + d, \dots, a + (k-1)d$$
 are all the same color

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color We pick $0 \leq W, X, Y, Z \leq k$ later and then set

2w + 3x = 5y + z

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$.Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd

2w + 3x = 5y + z

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$.Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick
$$0 \le W, X, Y, Z \le k$$
 later and then set $w = a + Wd$ $x = a + Xd$ $y = a + Yd$

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$.Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a + d, \dots, a + (k-1)d$$
 are all the same color

We pick
$$0 \le W, X, Y, Z \le k$$
 later and then set $w = a + Wd$ $x = a + Xd$ $y = a + Yd$ $z = a + Zd$

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$.Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a+d, \ldots, a+(k-1)d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = a + Zd Good News: COL(w) = COL(x) = COL(y) = COL(z).

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a + d, \dots, a + (k-1)d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = a + Zd Good News: COL(w) = COL(x) = COL(y) = COL(z).

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a + d, \dots, a + (k-1)d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = a + Zd Good News: COL(w) = COL(x) = COL(y) = COL(z). Want

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is d-regular. Let $c \in \mathbb{N}$. Use VDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a + d, \dots, a + (k-1)d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = a + Zd Good News: COL(w) = COL(x) = COL(y) = COL(z). Want

$$2w + 3x = 5y + z$$

$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$

Want

$$2w + 3x = 5y + z$$

Want

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$

Want

$$2w + 3x = 5y + z$$
$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$
$$2a + 2Wd + 3a + 3Xd = 5a + 5Y + a + Zd$$

Want

$$2w + 3x = 5y + z$$
$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$
$$2a + 2Wd + 3a + 3Xd = 5a + 5Y + a + Zd$$

WOW

Want

$$2w + 3x = 5y + z$$
$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$
$$2a + 2Wd + 3a + 3Xd = 5a + 5Y + a + Zd$$

WOW Nothing drops out.

Want

$$2w + 3x = 5y + z$$
$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$
$$2a + 2Wd + 3a + 3Xd = 5a + 5Y + a + Zd$$

WOW Nothing drops out.

What to do? Discuss.

Want

$$2w + 3x = 5y + z$$
$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$
$$2a + 2Wd + 3a + 3Xd = 5a + 5Y + a + Zd$$

WOW Nothing drops out.

What to do? Discuss.

We would like to set z = Zd instead of z = a + Zd.

Want

$$2w + 3x = 5y + z$$
$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)$$
$$2a + 2Wd + 3a + 3Xd = 5a + 5Y + a + Zd$$

WOW Nothing drops out.

What to do? Discuss.

We would like to set z = Zd instead of z = a + Zd.

Need a Variant of VDW's Thm.

Extended VDW Thm

Extended VDW's Thm

VDW's Thm
$$(\forall k, c)(\exists W = W(k, c) \text{ st } \forall \text{ COL} \colon [W] \rightarrow [c] \exists a, d \text{ st}$$

$$COL(a) = \cdots = COL(a + (k - 1))d$$

Extended VDW's Thm

VDW's Thm $(\forall k, c)(\exists W = W(k, c) \text{ st } \forall \text{ COL} : [W] \rightarrow [c] \exists a, d \text{ st}$

$$COL(a) = \cdots = COL(a + (k-1))d$$

What about d itself? Can it be the same colors as $a, a + d, \dots, a + (k - 1)d$?

Extended VDW's Thm

VDW's Thm $(\forall k, c)(\exists W = W(k, c) \text{ st } \forall \text{ COL} \colon [W] \rightarrow [c] \exists a, d \text{ st}$

$$COL(a) = \cdots = COL(a + (k-1))d$$

What about d itself? Can it be the same colors as $a, a + d, \dots, a + (k - 1)d$?

Extended VDW's Thm

EVDW Thm
$$(\forall k, c)(\exists E = E(k, c) \text{ st } \forall \text{ COL}: [E] \rightarrow [c] \exists a, d \text{ st}$$

$$COL(a) = \cdots = COL(a + (k-1)d) = COL(d)$$

Pf. Ind on *c*.

Pf. Ind on c. E(k,1) = k.

Pf. Ind on c. E(k,1) = k. We show $E(k,c) \le W(kX,c)$ for a large X.

```
Pf. Ind on c. E(k,1) = k. We show E(k,c) \le W(kX,c) for a large X. COL: [W(kX,c)] \rightarrow [c].
```

```
Pf. Ind on c. E(k,1) = k. We show E(k,c) \le W(kX,c) for a large X. COL: [W(kX,c)] \rightarrow [c]. By VDW there exists A, D: A, A + D, \ldots, A + kXD is color (we can assume) c.
```

```
Pf. Ind on c. E(k,1) = k. We show E(k,c) \le W(kX,c) for a large X. COL: [W(kX,c)] \rightarrow [c]. By VDW there exists A,D: A,A+D,\ldots,A+kXD is color (we can assume) c. A,A+D,\ldots,A+(k-1)D are color c. So COL(D) \ne c.
```

```
Pf. Ind on c. E(k,1)=k. We show E(k,c) \leq W(kX,c) for a large X. COL: [W(kX,c)] \rightarrow [c]. By VDW there exists A,D: A,A+D,\ldots,A+kXD is color (we can assume) c. A,A+D,\ldots,A+(k-1)D are color c. So \mathrm{COL}(D) \neq c. A,A+2D,\ldots,A+2(k-1)D are c. So \mathrm{COL}(2D) \neq c.
```

```
Pf. Ind on c.
E(k,1) = k.
We show E(k,c) \leq W(kX,c) for a large X.
COL: [W(kX,c)] \rightarrow [c].
By VDW there exists A, D:
A, A + D, \dots, A + kXD is color (we can assume) c.
A, A + D, \dots, A + (k-1)D are color c. So COL(D) \neq c.
A, A+2D, \ldots, A+2(k-1)D are c. So COL(2D) \neq c.
A, A + XD, A + 2XD, ..., A + (k-1)XD. So
COL((k-1)XD) \neq c.
```

```
Pf. Ind on c.
E(k,1) = k.
We show E(k,c) \leq W(kX,c) for a large X.
COL: [W(kX,c)] \rightarrow [c].
By VDW there exists A, D:
A, A + D, \dots, A + kXD is color (we can assume) c.
A, A+D, \ldots, A+(k-1)D are color c. So \mathrm{COL}(D) \neq c.
A, A+2D, \ldots, A+2(k-1)D are c. So COL(2D) \neq c.
A, A + XD, A + 2XD, ..., A + (k-1)XD. So
COL((k-1)XD) \neq c.
D, 2D, \ldots, (k-1)XD use [c-1], only c-1 colors.
```

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

$$D, 2D, \dots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

D, 2D, ..., E(k, c-1)D only use [c-1].

$$D, 2D, \dots, (k-1)XD$$
 use $[c-1]$.
Set $X = E(k, c-1)$. This is where we use Ind. Hyp.

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

D, 2D, ..., E(k, c-1)D only use [c-1].

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a', d'

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

D, 2D, ..., E(k, c-1)D only use [c-1].

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a', d'

 $a', a' + d', \dots, a' + (k-1)d', d'$ same COL' color.

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

$$D, 2D, ..., E(k, c-1)D$$
 only use $[c-1]$.

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a',d'

$$a', a' + d', \dots, a' + (k-1)d', d'$$
 same COL' color.

$$a'D, (a'+d')D, \ldots, (a'+(k-1)d')D, d'D$$
 same COL color.

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

$$D, 2D, ..., E(k, c-1)D$$
 only use $[c-1]$.

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a',d'

$$a', a' + d', \dots, a' + (k-1)d', d'$$
 same COL' color.

$$a'D, (a'+d')D, \dots, (a'+(k-1)d')D, d'D$$
 same COL color.

$$a'D, a'D + d'D, \dots, a'D + (k-1)d'D, d'D$$
 same COL color.

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

$$D, 2D, ..., E(k, c-1)D$$
 only use $[c-1]$.

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a',d'

$$a', a' + d', \dots, a' + (k-1)d', d'$$
 same COL' color.

$$a'D, (a'+d')D, \dots, (a'+(k-1)d')D, d'D$$
 same COL color.

$$a'D, a'D + d'D, \dots, a'D + (k-1)d'D, d'D$$
 same COL color.
 $a = a'D, d = d'D$

Proof of Extended VDW Thm (cont)

$$D, 2D, \ldots, (k-1)XD$$
 use $[c-1]$.

Set X = E(k, c - 1). This is where we use Ind. Hyp.

$$D, 2D, ..., E(k, c-1)D$$
 only use $[c-1]$.

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a',d'

$$a', a' + d', \dots, a' + (k-1)d', d'$$
 same COL' color.

$$a'D, (a'+d')D, \dots, (a'+(k-1)d')D, d'D$$
 same COL color.

$$a'D, a'D + d'D, \dots, a'D + (k-1)d'D, d'D$$
 same COL color.
 $a = a'D, d = d'D$

$$a, a + d, \dots, a + (k-1)d, d$$
 same COL color.

What I presented above is NOT the EVDW. This is:

What I presented above is NOT the EVDW. This is:

EVDW Thm

$$(\forall k, c, e \in \mathbb{N})(\exists E = E(k, e, c)(\forall \text{COL} \colon [E] \rightarrow [c])(\exists a, d) \text{ st}$$

What I presented above is NOT the EVDW. This is:

EVDW Thm

$$(\forall k, c, e \in \mathbb{N})(\exists E = E(k, e, c)(\forall \text{COL} \colon [E] \rightarrow [c])(\exists a, d) \text{ st}$$

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

are all the same color.

What I presented above is NOT the EVDW. This is:

EVDW Thm

$$(\forall k, c, e \in \mathbb{N})(\exists E = E(k, e, c)(\forall \text{COL} \colon [E] \rightarrow [c])(\exists a, d) \text{ st}$$

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

are all the same color.

This I leave to the reader.

What I presented above is NOT the EVDW. This is:

EVDW Thm

$$(\forall k, c, e \in \mathbb{N})(\exists E = E(k, e, c)(\forall \text{COL} \colon [E] \rightarrow [c])(\exists a, d) \text{ st}$$

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

are all the same color.

This I leave to the reader.

We will only use the e = 1 case.

Back to 2w + 3x = 5y + z

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is regular.

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later.

Thm 2w+3x=5y+z is regular. Let $c\in\mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W]{\to}[c]\ \exists a,d$

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

 $a, a + d, \dots, a + (k-1)d, d$ are all the same color

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] {\to} [c] \; \exists a, d$

$$a, a+d, \ldots, a+(k-1)d, d$$
 are all the same color We pick $0 \le W, X, Y, Z \le k$ later and then set

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] {\to} [c] \; \exists a,d$

$$a, a + d, \dots, a + (k-1)d, d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] {\to} [c] \; \exists a, d$

$$a, a+d, \ldots, a+(k-1)d, d$$
 are all the same color We pick $0 \leq W, X, Y, Z \leq k$ later and then set

$$w = a + Wd$$
 $x = a + Xd$

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] {\to} [c] \; \exists a, d$

$$a, a+d, \ldots, a+(k-1)d, d$$
 are all the same color

We pick
$$0 \le W, X, Y, Z \le k$$
 later and then set $w = a + Wd$ $x = a + Xd$ $y = a + Yd$

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$.Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \ \exists a, d$

$$a, a + d, \dots, a + (k-1)d, d$$
 are all the same color

We pick
$$0 \le W, X, Y, Z \le k$$
 later and then set $w = a + Wd$ $x = a + Xd$ $y = a + Yd$ $z = Zd$

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$. Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \exists a, d$

$$a, a + d, \dots, a + (k-1)d, d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = Zd Good News: COL(w) = COL(x) = COL(y) = COL(z).

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$. Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \exists a, d$

$$a, a + d, \dots, a + (k-1)d, d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = Zd Good News: COL(w) = COL(x) = COL(y) = COL(z). Want

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$. Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \exists a, d$

$$a, a + d, \dots, a + (k-1)d, d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = Zd Good News: COL(w) = COL(x) = COL(y) = COL(z).

$$2w + 3x = 5y + z$$

Thm 2w + 3x = 5y + z is regular. Let $c \in \mathbb{N}$. Use EVDW's thm with c and with k we pick later. $\exists W$ for all $\mathrm{COL}[W] \rightarrow [c] \exists a, d$

$$a, a + d, \dots, a + (k-1)d, d$$
 are all the same color

We pick $0 \le W, X, Y, Z \le k$ later and then set w = a + Wd x = a + Xd y = a + Yd z = Zd Good News: COL(w) = COL(x) = COL(y) = COL(z). Want

$$2w + 3x = 5y + z$$

$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$$

$$2w + 3x = 5y + z$$

$$2w + 3x = 5y + z$$

$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$$

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$ **WOW** The *a*'s drop out.

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$ **WOW** The *a*'s drop out.
 $2Wd + 3Xd = 5Yd + Zd$ **WOW** The *d*'s drop out.

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$ **WOW** The *a*'s drop out.
 $2Wd + 3Xd = 5Yd + Zd$ **WOW** The *d*'s drop out.
 $2W + 3X = 5Y + Z$

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$ **WOW** The *a*'s drop out.
 $2Wd + 3Xd = 5Yd + Zd$ **WOW** The *d*'s drop out.
 $2W + 3X = 5Y + Z$
We'll take $W = 2$, $X = 4$, $Y = 3$, $Z = 1$

Want

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$ **WOW** The *a*'s drop out.
 $2Wd + 3Xd = 5Yd + Zd$ **WOW** The *d*'s drop out.
 $2W + 3X = 5Y + Z$
We'll take $W = 2$, $X = 4$, $Y = 3$, $Z = 1$

So take w = a + 2d x = a + 4d y = a + 3d z = d

$$2w + 3x = 5y + z$$

 $2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$
 $2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$ **WOW** The a's drop out.
 $2Wd + 3Xd = 5Yd + Zd$ **WOW** The d's drop out.
 $2W + 3X = 5Y + Z$
We'll take $W = 2$, $X = 4$, $Y = 3$, $Z = 1$
So take $w = a + 2d$ $x = a + 4d$ $y = a + 3d$ $z = d$
So take EVDW with $k = 5$.

Want

Done

$$2w + 3x = 5y + z$$

$$2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)$$

$$2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd$$

$$2Wd + 3Xd = 5Yd + Zd$$

$$WOW$$
The *d*'s drop out.
$$2W + 3X = 5Y + Z$$
We'll take $W = 2$, $X = 4$, $Y = 3$, $Z = 1$
So take $w = a + 2d$ $x = a + 4d$ $y = a + 3d$ $z = d$
So take EVDW with $k = 5$.

4D > 4B > 4E > 4E > 9Q0

Rado's Thm (Half of it)

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$ be st some subset of the a_i 's sums to 0. Then

Rado's Thm (Half of it)

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$ be st some subset of the a_i 's sums to 0. Then $a_1x_1 + \cdots + a_kx_k = 0$ is regular.

Rado's Thm (Half of it)

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$ be st some subset of the a_i 's sums to 0. Then $a_1x_1 + \cdots + a_kx_k = 0$ is regular.

We won't prove. You have seen most of the ideas needed to prove it.

An Equation Where Rado Fails

$$x + 2y = 4z$$

We define $\mathrm{COL} \colon \mathbb{N} {\rightarrow} [4]$ st

$$x + 2y = 4z$$

We define COL: $\mathbb{N} \rightarrow [4]$ st

x + 2y = 4z has no mono solution.

$$x + 2y = 4z$$

$$x + 2y = 4z$$
 has no mono solution.

 $COL(5^ab) = b \mod 5$. Note that $b \neq 0$.

$$x + 2y = 4z$$

x + 2y = 4z has no mono solution.

 $COL(5^ab) = b \mod 5$. Note that $b \neq 0$.

If a_1, a_2, a_3 is a mono solution, say color is b.

$$x + 2y = 4z$$

$$x + 2y = 4z$$
 has no mono solution.

 $a_1 = 5^{e_1}b_1$ $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $COL(5^ab) = b \mod 5$. Note that $b \neq 0$. If a_1, a_2, a_3 is a mono solution, say color is b.

$$x + 2y = 4z$$

$$x + 2y = 4z$$
 has no mono solution.

 $COL(5^ab) = b \mod 5$. Note that $b \neq 0$. If a_1, a_2, a_3 is a mono solution, say color is b.

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

$$b_1 \equiv b_2 \equiv b_3 \equiv b \pmod{5}$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$.

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2 \times 5^{e_2 - e_1} b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2 \times 5^{e_2 - e_1} b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_1 < e_2, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2 \times 5^{e_2 - e_1} b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$b \equiv 0 \pmod{5}$$
 contradiction

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$.

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$. $a_1 + 2a_2 = 4a_3$

$$a_1=5^{e_1}b_1$$
 $a_2=5^{e_2}b_2$ $a_3=5^{e_3}b_3$ $b_1\equiv b_2\equiv b_3\equiv b\pmod 5$ and $e_2< e_1,e_3$. Recall $b\neq 0$. $a_1+2a_2=4a_3$

 $5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$

$$a_1=5^{e_1}b_1$$
 $a_2=5^{e_2}b_2$ $a_3=5^{e_3}b_3$ $b_1\equiv b_2\equiv b_3\equiv b\pmod 5$ and $e_2< e_1,e_3$. Recall $b\neq 0$. $a_1+2a_2=4a_3$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_2} to get:

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod{5}$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_2} to get:

$$5^{e_1-e_2}b_1 + 2 \times b_2 = 4 \times 5^{e_3-e_2}b_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_2} to get:

$$5^{e_1-e_2}b_1 + 2 \times b_2 = 4 \times 5^{e_3-e_2}b_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_2} to get:

$$5^{e_1-e_2}b_1 + 2 \times b_2 = 4 \times 5^{e_3-e_2}b_3$$

$$2b \equiv 0 \pmod{5}$$
 contradiction

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_2} to get:

$$5^{e_1-e_2}b_1 + 2 \times b_2 = 4 \times 5^{e_3-e_2}b_3$$

Take this mod 5 to get:

$$2b \equiv 0 \pmod{5}$$
 contradiction

Key 5 is prime: $2b \equiv 0 \pmod{5}$ implies $b \equiv 0 \pmod{5}$.

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_2} to get:

$$5^{e_1-e_2}b_1 + 2 \times b_2 = 4 \times 5^{e_3-e_2}b_3$$

Take this mod 5 to get:

$$2b \equiv 0 \pmod{5}$$
 contradiction

Key 5 is prime: $2b \equiv 0 \pmod{5}$ implies $b \equiv 0 \pmod{5}$.

Contradiction

Case
$$e_3 < e_1, e_2$$

Similar to $e_2 < e_1, 3_3$.

Case
$$e_1 = e_2 < e_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

$$a_1=5^{e_1}b_1$$
 $a_2=5^{e_2}b_2$ $a_3=5^{e_3}b_3$ $b_1\equiv b_2\equiv b_3\equiv b\pmod 5$ and $e_2< e_1,e_3.$

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$. $a_1 + 2a_2 = 4a_3$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$. $a_1 + 2a_2 = 4a_3$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_3}b_3$$

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$b + 2b \equiv 0 \pmod{5}$$

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$b+2b\equiv 0\pmod 5$$

$$3b \equiv 0 \pmod{5}$$

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_3}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

$$b + 2b \equiv 0 \pmod{5}$$

$$3b \equiv 0 \pmod{5}$$

$$3b \equiv 0 \pmod{5}$$
 implies $b \equiv 0 \pmod{5}$. Contradiction,

Case
$$e_1 = e_3 < e_2$$
 and $e_2 = e_3 < e_1$

Similar to $e_1 = e_2 < e_3$.

Case
$$e_1 = e_2 = e_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

Case
$$e_1 = e_2 = e_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$.

$$a_1=5^{e_1}b_1$$
 $a_2=5^{e_2}b_2$ $a_3=5^{e_3}b_3$ $b_1\equiv b_2\equiv b_3\equiv b\pmod 5$ and $e_2< e_1,e_3$. Recall $b\neq 0$. $a_1+2a_2=4a_3$

$$a_1=5^{e_1}b_1$$
 $a_2=5^{e_2}b_2$ $a_3=5^{e_3}b_3$ $b_1\equiv b_2\equiv b_3\equiv b\pmod 5$ and $e_2< e_1,e_3$. Recall $b\ne 0$. $a_1+2a_2=4a_3$ $5^{e_1}b_1+2\times 5^{e_1}b_2=4\times 5^{e_1}b_3$

$$a_1=5^{e_1}b_1$$
 $a_2=5^{e_2}b_2$ $a_3=5^{e_3}b_3$ $b_1\equiv b_2\equiv b_3\equiv b\pmod 5$ and $e_2< e_1,e_3$. Recall $b\neq 0$. $a_1+2a_2=4a_3$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_1}b_3$$

Divide by 5^{e_1} to get:

$$a_1 = 5^{e_1} b_1$$
 $a_2 = 5^{e_2} b_2$ $a_3 = 5^{e_3} b_3$ $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_1}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2b_2 = 4b_3$$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod 5$ and $e_2 < e_1, e_3$. Recall $b \neq 0$.

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_1}b_2 = 4 \times 5^{e_1}b_3$$

Divide by 5^{e_1} to get:

$$b_1 + 2b_2 = 4b_3$$

Take this mod 5 to get $3b \equiv 4b$ so $b \equiv 0 \pmod{5}$ Contradiction.

1. The proof used that NO subset of 1, 2, -4 sums to 0.

- 1. The proof used that NO subset of 1, 2, -4 sums to 0.
- 2. We used 5 since

- 1. The proof used that NO subset of 1, 2, -4 sums to 0.
- 2. We used 5 since
 - 2.1 We need a prime p

- 1. The proof used that NO subset of 1, 2, -4 sums to 0.
- 2. We used 5 since
 - 2.1 We need a prime p
 - 2.2 We needed $3b \equiv 0 \pmod{p}$ implies $b \equiv 0 \pmod{p}$

- 1. The proof used that NO subset of 1, 2, -4 sums to 0.
- 2. We used 5 since
 - 2.1 We need a prime p
 - 2.2 We needed $3b \equiv 0 \pmod{p}$ implies $b \equiv 0 \pmod{p}$ 5 is the lowest such prime.

Rado's Thm (Other Half of it)

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$ be st no subset of the a_i 's sums to 0. $a_1x_1 + \cdots + a_kx_k = 0$ is not regular.

Rado's Thm (Other Half of it)

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$ be st no subset of the a_i 's sums to 0. $a_1x_1 + \cdots + a_kx_k = 0$ is not regular.

We will not prove this but you have all of the ideas you need to prove it.

(The c-coloring that shows non-regularity uses c=the first prime bigger then any sum of the coefficients.)

Rado's Thm (Other Half of it)

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$ be st no subset of the a_i 's sums to 0. $a_1x_1 + \cdots + a_kx_k = 0$ is not regular.

We will not prove this but you have all of the ideas you need to prove it.

(The c-coloring that shows non-regularity uses c=the first prime bigger then any sum of the coefficients.)

Research Question

- 1. For x + 2y = 4z what about 4-coloring? 3-coloring? 2-coloring?
- More generally one can take an equation where no sum of the coefficients is 0 and look at colorings with a small number of colors.

Full Rado

Full Rado Thm A linear equation $\sum_{i=1}^{n} a_i x_i = 0$ is regular iff some subset of the coefficient sum to 0.

Full Rado

Full Rado Thm A linear equation $\sum_{i=1}^{n} a_i x_i = 0$ is regular iff some subset of the coefficient sum to 0.

(For most equations with the coefficients sum to 0 you actually get d-regular.)

Misc

Research Questions

(Some is known about some of these.) Prove or disprove that the equations below are regular.

Research Questions

(Some is known about some of these.)

Prove or disprove that the equations below are regular.

1. $\sum_{i=1}^{n} a_i x_i = A$ for some A.

Research Questions

(Some is known about some of these.)
Prove or disprove that the equations below are regular.

- 1. $\sum_{i=1}^{n} a_i x_i = A$ for some A.
- 2. Higher degree equations (seems hard).

1. There is a matrix form of Rado which we omit.

- 1. There is a matrix form of Rado which we omit.
- 2. **Folkman's Thm** For all k, c there exists N = N(k, c) st for all COL: $[N] \rightarrow [c]$ there exists a_1, \ldots, a_k st ALL non-empty sums of the a_i 's are the same color.

- 1. There is a matrix form of Rado which we omit.
- 2. Folkman's Thm For all k, c there exists N = N(k, c) st for all COL: $[N] \rightarrow [c]$ there exists a_1, \ldots, a_k st ALL non-empty sums of the a_i 's are the same color.
- 3. For all c there exists N = N(c) st for any COL: $[N] \rightarrow [c]$ there is a mono solution to $16x^2 + 9y^2 = z^2$.

- 1. There is a matrix form of Rado which we omit.
- 2. Folkman's Thm For all k, c there exists N = N(k, c) st for all COL: $[N] \rightarrow [c]$ there exists a_1, \ldots, a_k st ALL non-empty sums of the a_i 's are the same color.
- 3. For all c there exists N = N(c) st for any COL: $[N] \rightarrow [c]$ there is a mono solution to $16x^2 + 9y^2 = z^2$. (This equation has certain properties that make it work, so there is really a more general thm here.) http:
 - //fourier.math.uoc.gr/~ergodic/Slides/Host.pdf

Thm There exists N st for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Thm There exists N st for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

$$x^2 + y^2 = z^2$$
 Result by Heule&Kullmann&Marek

Do we know what N is? We actually do!

▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.

$$x^2 + y^2 = z^2$$
 Result by Heule&Kullmann&Marek

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

$$x^2 + y^2 = z^2$$
 Result by Heule&Kullmann&Marek

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

$$x^2 + y^2 = z^2$$
 Result by Heule&Kullmann&Marek

Do we know what N is? We actually do!

- ightharpoonup \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Questions

Thm There exists N st for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Questions

1) See how large and N you can color just with your laptop. Greedy, Randomized Greedy, are worth trying. Does Rand-Greedy do better? (I think so.)

Thm There exists N st for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Questions

- 1) See how large and N you can color just with your laptop. Greedy, Randomized Greedy, are worth trying. Does Rand-Greedy do better? (I think so.)
- 2) Once you have done (1) try it out on other equations.

Thm There exists N st for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Questions

- 1) See how large and N you can color just with your laptop. Greedy, Randomized Greedy, are worth trying. Does Rand-Greedy do better? (I think so.)
- 2) Once you have done (1) try it out on other equations.
- 3) (Might be Hard) Obtain a human-readable proof with perhaps a much bigger N, but which can be generalized to c=3 and beyond.