Folkman's Theorem

Exposition by William Gasarch

August 6, 2024

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm $(\forall c)(\exists S = S(c))$ st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)
 \triangleright $x + y = z$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)

$$\blacktriangleright x + y = z$$

We can view this another way:

$$\operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(x+y).$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)

 $\blacktriangleright x + y = z$

We can view this another way:

$$\operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(x+y).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We want the following extension: $\exists x, y, z$ COL(x) = COL(y) = COL(z)

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)

 $\blacktriangleright x + y = z$

We can view this another way:

$$\operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(x + y).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We want the following extension: $\exists x, y, z$ COL(x) = COL(y) = COL(z)= COL(x + y) = COL(x + z) = COL(y + z)

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)

 $\blacktriangleright x + y = z$

We can view this another way:

$$\operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(x+y).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We want the following extension: $\exists x, y, z$ COL(x) = COL(y) = COL(z) = COL(x + y) = COL(x + z) = COL(y + z)= COL(x + y + z).

Thm
$$(\forall c)(\exists S = S(c))$$
 st \forall COL : $[S] \rightarrow [c] \exists x, y, z$ st
 \triangleright COL $(x) =$ COL $(y) =$ COL (z)

 $\blacktriangleright x + y = z$

We can view this another way:

$$\operatorname{COL}(x) = \operatorname{COL}(y) = \operatorname{COL}(x + y).$$

We want the following extension: $\exists x, y, z$ COL(x) = COL(y) = COL(z) = COL(x + y) = COL(x + z) = COL(y + z)= COL(x + y + z).

More generally, we want all non-empty sums are the same color.

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st COL $(b_2) =$ COL $(b_1 + b_2)$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let T = 3c (this is prob not optimal).

Thm $(\forall c)(\exists T = T(c))$ st $\forall \text{ COL} : [T] \rightarrow [c] \exists b_1 < b_2$ st $\text{COL}(b_2) = \text{COL}(b_1 + b_2)$

Let T = 3c (this is prob not optimal). Look at $2c + 0, \ldots, 2c + c$.

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st COL $(b_2) =$ COL $(b_1 + b_2)$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Let T = 3c (this is prob not optimal). Look at $2c + 0, \dots, 2c + c$. $(\exists 0 \le i < j \le c)[COL(2c + i) = COL(2c + j)].$

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st COL $(b_2) =$ COL $(b_1 + b_2)$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Let T = 3c (this is prob not optimal). Look at $2c + 0, \dots, 2c + c$. $(\exists 0 \le i < j \le c)[COL(2c + i) = COL(2c + j)].$ $b_1 = j - i$

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st COL $(b_2) =$ COL $(b_1 + b_2)$ Let T = 3c (this is prob not optimal). Look at $2c + 0, \dots, 2c + c$. $(\exists 0 \le i < j \le c)[$ COL(2c + i) =COL(2c + j)]. $b_1 = j - i$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

$$b_2 = 2c + i$$

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st COL $(b_2) =$ COL $(b_1 + b_2)$ Let T = 3c (this is prob not optimal). Look at $2c + 0, \dots, 2c + c$. $(\exists 0 \le i < j \le c)[$ COL(2c + i) =COL(2c + j)]. $b_1 = j - i$ $b_2 = 2c + i$ Note $b_1 < b_2$ easy.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st $\operatorname{COL}(b_2) = \operatorname{COL}(b_1 + b_2)$ Let T = 3c (this is prob not optimal). Look at 2c + 0, ..., 2c + c. $(\exists 0 \leq i \leq j \leq c)[\operatorname{COL}(2c+i) = \operatorname{COL}(2c+i)].$ $b_1 = i - i$ $b_2 = 2c + i$ Note $b_1 < b_2$ easy. $\operatorname{COL}(b_2) = \operatorname{COL}(2c+i)$

・ロト・西ト・西ト・西ト・日・今日・

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st $\operatorname{COL}(b_2) = \operatorname{COL}(b_1 + b_2)$ Let T = 3c (this is prob not optimal). Look at 2c + 0, ..., 2c + c. $(\exists 0 \le i < j \le c)[\operatorname{COL}(2c+i) = \operatorname{COL}(2c+j)].$ $b_1 = i - i$ $b_2 = 2c + i$ Note $b_1 < b_2$ easy. $\operatorname{COL}(b_2) = \operatorname{COL}(2c+i)$ $\operatorname{COL}(b_1 + b_2) = \operatorname{COL}((i - i) + (2c + i)) = \operatorname{COL}(2c + i).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○○

Thm $(\forall c)(\exists T = T(c))$ st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st $\operatorname{COL}(b_2) = \operatorname{COL}(b_1 + b_2)$ Let T = 3c (this is prob not optimal). Look at 2c + 0, ..., 2c + c. $(\exists 0 \le i < j \le c)[\operatorname{COL}(2c+i) = \operatorname{COL}(2c+j)].$ $b_1 = i - i$ $b_2 = 2c + i$ Note $b_1 < b_2$ easy. $\operatorname{COL}(b_2) = \operatorname{COL}(2c+i)$ $\operatorname{COL}(b_1 + b_2) = \operatorname{COL}((j - i) + (2c + i)) = \operatorname{COL}(2c + i).$ **Note** $b_1 < b_2$ thm follows from Schur, but we wanted elt proof.

・ロト・西・・日・・日・・日・

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st $\forall \text{ COL} : [T] \rightarrow [c] \exists b_1 < b_2$ st $\text{COL}(b_2) = \text{COL}(b_1 + b_2)$ AND $b_1 < b_2$ AND $b_1, b_2 \equiv 0 \pmod{d}$.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Let T(c, d) = T(c)d = 3cd (this is prob not optimal).

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st $\forall \text{ COL} : [T] \rightarrow [c] \exists b_1 < b_2$ st
 $\text{COL}(b_2) = \text{COL}(b_1 + b_2) \text{ AND } b_1 < b_2 \text{ AND}$
 $b_1, b_2 \equiv 0 \pmod{d}.$
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Look at (2c+0)d, ..., (2c+c)d.

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
 $\operatorname{COL}(b_2) = \operatorname{COL}(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[\operatorname{COL}((2c + i)d) = \operatorname{COL}((2c + j)d)]$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
COL $(b_2) =$ COL $(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[$ COL $((2c + i)d) =$ COL $((2c + j)d)]$.
 $b_1 = (j - i)d$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
COL $(b_2) =$ COL $(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[$ COL $((2c + i)d) =$ COL $((2c + j)d)]$.
 $b_1 = (j - i)d$
 $b_2 = (2c + i)d$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
COL $(b_2) =$ COL $(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[$ COL $((2c + i)d) =$ COL $((2c + j)d)]$.
 $b_1 = (j - i)d$
 $b_2 = (2c + i)d$
Note $b_1 < b_2$ easy.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
COL $(b_2) = \text{COL}(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[\text{COL}((2c + i)d) = \text{COL}((2c + j)d)]$.
 $b_1 = (j - i)d$
 $b_2 = (2c + i)d$
Note $b_1 < b_2$ easy.
 $\text{COL}(b_2) = \text{COL}((2c + i)d)$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
COL $(b_2) = \text{COL}(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[\text{COL}((2c + i)d) = \text{COL}((2c + j)d)]$.
 $b_1 = (j - i)d$
 $b_2 = (2c + i)d$
Note $b_1 < b_2$ easy.
 $\text{COL}(b_2) = \text{COL}((2c + i)d) = \text{COL}((2c + j)d)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▼ 釣∝⊙

Thm
$$(\forall c, d)(\exists T = T(c)d)$$
 st \forall COL : $[T] \rightarrow [c] \exists b_1 < b_2$ st
COL $(b_2) =$ COL $(b_1 + b_2)$ AND $b_1 < b_2$ AND
 $b_1, b_2 \equiv 0 \pmod{d}$.
Let $T(c, d) = T(c)d = 3cd$ (this is prob not optimal).
Look at $(2c + 0)d, \dots, (2c + c)d$.
 $(\exists 0 \le i < j \le c)[$ COL $((2c + i)d) =$ COL $((2c + j)d)]$.
 $b_1 = (j - i)d$
 $b_2 = (2c + i)d$
Note $b_1 < b_2$ easy.
COL $(b_2) =$ COL $((2c + i)d) =$ COL $((2c + i)d) =$ COL $((2c + j)d)$.
WRITE DOWN WHAT $T(c, d)$ MEANS FOR LATER USE.

Thm $(\forall c)(\exists U = U(c))$ st $\forall \text{ COL} : [U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st

Thm $(\forall c)(\exists U = U(c))$ st $\forall \text{COL} : [U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st $\text{COL}(b_3) = \text{COL}(b_3 + b_1) = \text{COL}(b_3 + b_2) = \text{COL}(b_3 + b_2 + b_1).$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm
$$(\forall c)(\exists U = U(c))$$
 st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st
COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$.
COL $(b_2) =$ COL $(b_1 + b_2)$

Thm
$$(\forall c)(\exists U = U(c))$$
 st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st
COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$.
COL $(b_2) =$ COL $(b_1 + b_2)$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Can Restate As

Thm
$$(\forall c)(\exists U = U(c))$$
 st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st
COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$.
COL $(b_2) =$ COL $(b_1 + b_2)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Can Restate As

All sums with last term b_3 have same color

Thm
$$(\forall c)(\exists U = U(c))$$
 st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st
COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$.
COL $(b_2) =$ COL $(b_1 + b_2)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Can Restate As

All sums with last term b_3 have same color All sums with last term b_2 have same color

Thm $(\forall c)(\exists U = U(c))$ st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$. COL $(b_2) =$ COL $(b_1 + b_2)$

Can Restate As

All sums with last term b_3 have same color All sums with last term b_2 have same color All sums with last term b_1 have same color (trivial).

Thm $(\forall c)(\exists U = U(c))$ st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$. COL $(b_2) =$ COL $(b_1 + b_2)$

Can Restate As

All sums with last term b_3 have same color All sums with last term b_2 have same color All sums with last term b_1 have same color (trivial). Note that these can be different colors.

Thm $(\forall c)(\exists U = U(c))$ st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$. COL $(b_2) =$ COL $(b_1 + b_2)$

Can Restate As

All sums with last term b_3 have same color All sums with last term b_2 have same color All sums with last term b_1 have same color (trivial). Note that these can be different colors.

Will prove on next slides.

$b_1 < b_2 < b_3$ Theorem

Thm $(\forall c)(\exists U = U(c))$ st \forall COL : $[U] \rightarrow [c] \exists b_1 < b_2 < b_3$ st COL $(b_3) =$ COL $(b_3 + b_1) =$ COL $(b_3 + b_2) =$ COL $(b_3 + b_2 + b_1)$. COL $(b_2) =$ COL $(b_1 + b_2)$

Can Restate As

All sums with last term b_3 have same color All sums with last term b_2 have same color All sums with last term b_1 have same color (trivial). Note that these can be different colors.

Will prove on next slides.

We later show general case of $b_1 < \cdots < b_n$.

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$.

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both very large.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both very large. Block2 will be W(k, c) where k is TBD.

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both very large. Block2 will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color]

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both **very large**. Block2 will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color] a will be b_3 .

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both very large. Block2 will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color] a will be b_3 . Note that $d \leq \frac{W(k,c)}{k}$.

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both **very large**. Block2 will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color] a will be b_3 . Note that $d \leq \frac{W(k,c)}{k}$.

Block1 We Want Block1 $\geq T(c, d) = T(c)d$.

Fix c. U is TBD. Assume there is $\text{COL}: [U] \rightarrow [c]$. U will be in two blocks, both **very large**. **Block2** will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d \text{ same color }] a \text{ will be } b_3.$ Note that $d \leq \frac{W(k,c)}{k}$. **Block1** We Want Block1 $\geq T(c, d) = T(c)d$.

Don't know d.

Fix c. U is TBD. Assume there is $\text{COL}: [U] \rightarrow [c]$. U will be in two blocks, both **very large**. Block2 will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d \text{ same color }] a \text{ will be } b_3.$ Note that $d \leq \frac{W(k,c)}{k}$. Block1 We Want Block1 $\geq T(c, d) = T(c)d$.

Don't know d. Boo!

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both very large. Block2 will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d \text{ same color }] a \text{ will be } b_3.$ Note that $d \leq \frac{W(k,c)}{k}$. Block1 We Want Block1 $\geq T(c, d) = T(c)d$.

Don't know d. Boo! But know $d \leq \frac{W(k,c)}{k} \leq W(k,c)$.

Fix c. U is TBD. Assume there is COL: $[U] \rightarrow [c]$. U will be in two blocks, both **very large**. Block2 will be W(k,c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color] a will be b_3 . Note that $d \leq \frac{W(k,c)}{k}$. Block1 We Want Block1 $\geq T(c, d) = T(c)d$.

Don't know d. Boo! But know $d \le \frac{W(k,c)}{k} \le W(k,c)$. Yeah!

Fix c. U is TBD. Assume there is $\text{COL}: [U] \rightarrow [c]$. U will be in two blocks, both very large. **Block2** will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, ..., a + (k - 1)d \text{ same color }] a$ will be b_3 . Note that $d \leq \frac{W(k,c)}{k}$. **Block1** We Want Block1 $\geq T(c, d) = T(c)d$. Don't know d. **Boo!** But know $d \leq \frac{W(k,c)}{k} \leq W(k,c)$. Yeah! So take Block1 to be T(c)W(k,c).

Fix c. U is TBD. Assume there is $\text{COL}: [U] \rightarrow [c]$. U will be in two blocks, both very large. **Block2** will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, \dots, a + (k - 1)d \text{ same color }] a \text{ will be } b_3.$ Note that $d \leq \frac{W(k,c)}{k}$. **Block1** We Want Block1 $\geq T(c, d) = T(c)d$. Don't know d. Boo! But know $d \leq \frac{W(k,c)}{k} \leq W(k,c)$. Yeah! So take Block1 to be T(c)W(k,c). Block1 has $\{b'_1d, b'_2d\}$ (using div by d version) st

Fix c. U is TBD. Assume there is $\text{COL}: [U] \rightarrow [c]$. U will be in two blocks, both very large. **Block2** will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, \dots, a + (k - 1)d \text{ same color }] a \text{ will be } b_3.$ Note that $d \leq \frac{W(k,c)}{k}$. **Block1** We Want Block1 $\geq T(c, d) = T(c)d$. Don't know d. Boo! But know $d \leq \frac{W(k,c)}{k} \leq W(k,c)$. Yeah! So take Block1 to be T(c)W(k,c). Block1 has $\{b'_1d, b'_2d\}$ (using div by d version) st 1) $b'_1, b'_2 < T(c)$.

Fix c. U is TBD. Assume there is $\text{COL}: [U] \rightarrow [c]$. U will be in two blocks, both very large. **Block2** will be W(k, c) where k is TBD. $(\exists a, d)[a, a + d, \dots, a + (k - 1)d \text{ same color }] a \text{ will be } b_3.$ Note that $d < \frac{W(k,c)}{k}$. **Block1** We Want Block1 $\geq T(c, d) = T(c)d$. Don't know d. Boo! But know $d \leq \frac{W(k,c)}{k} \leq W(k,c)$. Yeah! So take Block1 to be T(c)W(k,c). Block1 has $\{b'_1d, b'_2d\}$ (using div by d version) st 1) $b'_1, b'_2 < T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$

Recap proof so far

Recap proof so far

Block2 has a, d st $a, a + d, \ldots, a + (k - 1)d$ same color.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recap proof so far Block2 has a, d st a, a + d, ..., a + (k - 1)d same color. Block1 has $\{b'_1d, b'_2d\}$ st

Recap proof so far Block2 has a, d st a, a + d, ..., a + (k - 1)d same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$.

Recap proof so far Block2 has a, d st $a, a + d, \dots, a + (k - 1)d$ same color. Block1 has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $\operatorname{COL}(b'_2d) = \operatorname{COL}(b'_2d + b'_1d)$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Recap proof so far Block2 has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. Block1 has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \le T(c)$. 2) COL $(b'_2d) = COL(b'_2d + b'_1d)$. We set $b_1 = b'_1d$ $b_2 = b'_2d$ $b_3 = a$

Recap proof so far Block2 has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. Block1 has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $\operatorname{COL}(b'_2d) = \operatorname{COL}(b'_2d + b'_1d)$. We set $b_1 = b'_1d$ $b_2 = b'_2d$ $b_3 = a$ $\operatorname{COL}(b_2 + b_1) = \operatorname{COL}(b_2)$ since we applied $b_1 < b_2$ Thm.

Recap proof so far Block2 has *a*, *d* st *a*, *a* + *d*,..., *a* + (*k* - 1)*d* same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \le T(c)$. 2) $\text{COL}(b'_2d) = \text{COL}(b'_2d + b'_1d)$. We set $b_1 = b'_1d$ $b_2 = b'_2d$ $b_3 = a$ $\text{COL}(b_2 + b_1) = \text{COL}(b_2)$ since we applied $b_1 < b_2$ Thm. $\text{COL}(b_3 + b_2 + b_1) = \text{COL}(a + b'_2d + b'_1d) = \text{COL}(a + (b'_2 + b'_1)d)$.

Recap proof so far Block2 has a, d st a, $a + d, \dots, a + (k - 1)d$ same color. Block1 has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $\operatorname{COL}(b'_2d) = \operatorname{COL}(b'_2d + b'_1d)$. We set $b_1 = b'_1d$ $b_2 = b'_2d$ $b_3 = a$ $\operatorname{COL}(b_2 + b_1) = \operatorname{COL}(b_2)$ since we applied $b_1 < b_2$ Thm. $\operatorname{COL}(b_3 + b_2 + b_1) = \operatorname{COL}(a + b'_2d + b'_1d) = \operatorname{COL}(a + (b'_2 + b'_1)d)$. Need $b'_2 + b'_1 \leq k$.

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d) = COL(a + (b'_2 + b'_1)d).$ Need $b'_2 + b'_1 < k$. $\operatorname{COL}(b_3 + b_1) = \operatorname{COL}(a + b_1' d).$

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $\operatorname{COL}(b_3 + b_2 + b_1) = \operatorname{COL}(a + b_2'd + b_1'd) = \operatorname{COL}(a + (b_2' + b_1')d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $\operatorname{COL}(b_3 + b_2 + b_1) = \operatorname{COL}(a + b_2'd + b_1'd) = \operatorname{COL}(a + (b_2' + b_1')d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$ $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b_2'd).$

うしん 同一人用 人用 人用 人口 マ

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d) = COL(a + (b'_2 + b'_1)d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$ $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b_2' d)$. Need $b_2' < k$

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d) = COL(a + (b'_2 + b'_1)d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$ $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b_2' d)$. Need $b_2' \leq k$ **Upshot** Need $b'_2 + b'_1 \leq k$. Take k = 2T(c) = 6c.

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d) = COL(a + (b'_2 + b'_1)d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$ $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b_2' d)$. Need $b_2' \leq k$ **Upshot** Need $b'_2 + b'_1 \leq k$. Take k = 2T(c) = 6c. **Block2** is W(6c, c)

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d) = COL(a + (b'_2 + b'_1)d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$ $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b_2' d)$. Need $b_2' < k$ **Upshot** Need $b'_2 + b'_1 \leq k$. Take k = 2T(c) = 6c. **Block2** is W(6c, c) **Block1** is 3cW(6c, c).

Recap proof so far **Block2** has a, d st a, $a + d, \ldots, a + (k - 1)d$ same color. **Block1** has $\{b'_1d, b'_2d\}$ st 1) $b'_1, b'_2 \leq T(c)$. 2) $COL(b'_2d) = COL(b'_2d + b'_1d).$ We set $b_1 = b'_1 d$ $b_2 = b'_2 d$ $b_3 = a$ $COL(b_2 + b_1) = COL(b_2)$ since we applied $b_1 < b_2$ Thm. $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d) = COL(a + (b'_2 + b'_1)d).$ Need $b'_2 + b'_1 < k$. $COL(b_3 + b_1) = COL(a + b_1' d)$. Need $b_1' < k$ $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b_2' d)$. Need $b_2' < k$ **Upshot** Need $b'_2 + b'_1 \leq k$. Take k = 2T(c) = 6c. **Block2** is W(6c, c) **Block1** is 3cW(6c, c).

U(c) = 3cW(6c, c) + W(6c, c) = (3c + 1)W(6c, c).

Summarize Proof

U = 2W(k, c) where k = 2W(dT(c), c).

Summarize Proof

U = 2W(k, c) where k = 2W(dT(c), c). VDW-in 2nd part: $a, a + d, \dots, a + (k - 1)d$ all colored e

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Summarize Proof

U = 2W(k, c) where k = 2W(dT(c), c). VDW-in 2nd part: a, a + d, ..., a + (k - 1)d all colored eBy $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d, $COL(b_2 + b_1) = COL(b_2)$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

U = 2W(k, c) where k = 2W(dT(c), c). VDW-in 2nd part: a, a + d, ..., a + (k - 1)d all colored eBy $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d, $COL(b_2 + b_1) = COL(b_2)$. Pick

$$b_1=b_1'd\quad <\quad b_2=b_2'd\quad <\quad b_3=a$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

$$U = 2W(k, c)$$
 where $k = 2W(dT(c), c)$.
VDW-in 2nd part: $a, a + d, ..., a + (k - 1)d$ all colored e
By $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d ,
 $COL(b_2 + b_1) = COL(b_2)$.
Pick

$$b_1=b_1'd$$
 < $b_2=b_2'd$ < $b_3=a$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

 $\operatorname{COL}(b_2 + b_1) = \operatorname{COL}(b_2)$ from $b_1 < b_2$ Theorem.

$$U = 2W(k, c)$$
 where $k = 2W(dT(c), c)$.
VDW-in 2nd part: $a, a + d, \ldots, a + (k - 1)d$ all colored e
By $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d ,
 $COL(b_2 + b_1) = COL(b_2)$.
Pick

$$b_1=b_1'd$$
 < $b_2=b_2'd$ < $b_3=a$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $\operatorname{COL}(b_2 + b_1) = \operatorname{COL}(b_2)$ from $b_1 < b_2$ Theorem. $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b'_2 d)$ (We made sure $b'_2 \leq 2T(c)$.)

$$U = 2W(k, c)$$
 where $k = 2W(dT(c), c)$.
VDW-in 2nd part: $a, a + d, \ldots, a + (k - 1)d$ all colored e
By $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d ,
 $COL(b_2 + b_1) = COL(b_2)$.
Pick

$$b_1=b_1'd$$
 < $b_2=b_2'd$ < $b_3=a$

 $\operatorname{COL}(b_2 + b_1) = \operatorname{COL}(b_2)$ from $b_1 < b_2$ Theorem. $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b'_2 d)$ (We made sure $b'_2 \leq 2T(c)$.) $\operatorname{COL}(b_3 + b_1) = \operatorname{COL}(a + b'_1 d)$ (We made sure $b'_1 \leq 2T(c)$.)

$$U = 2W(k, c)$$
 where $k = 2W(dT(c), c)$.
VDW-in 2nd part: $a, a + d, ..., a + (k - 1)d$ all colored e
By $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d ,
 $COL(b_2 + b_1) = COL(b_2)$.
Pick

$$b_1=b_1'd$$
 < $b_2=b_2'd$ < $b_3=a$

 $\operatorname{COL}(b_2 + b_1) = \operatorname{COL}(b_2)$ from $b_1 < b_2$ Theorem. $\operatorname{COL}(b_3 + b_2) = \operatorname{COL}(a + b'_2 d)$ (We made sure $b'_2 \le 2T(c)$.) $\operatorname{COL}(b_3 + b_1) = \operatorname{COL}(a + b'_1 d)$ (We made sure $b'_1 \le 2T(c)$.) $\operatorname{COL}(b_3 + b_2 + b_1) = \operatorname{COL}(a + b'_2 d + b'_1 d)$

$$U = 2W(k, c)$$
 where $k = 2W(dT(c), c)$.
VDW-in 2nd part: $a, a + d, ..., a + (k - 1)d$ all colored e
By $b_1 < b_2$ thm, 1st part have $b_1 < b_2$, both div by d ,
 $COL(b_2 + b_1) = COL(b_2)$.
Pick

$$b_1=b_1'd$$
 < $b_2=b_2'd$ < $b_3=a$

 $COL(b_2 + b_1) = COL(b_2)$ from $b_1 < b_2$ Theorem. $COL(b_3 + b_2) = COL(a + b'_2d)$ (We made sure $b'_2 \le 2T(c)$.) $COL(b_3 + b_1) = COL(a + b'_1d)$ (We made sure $b'_1 \le 2T(c)$.) $COL(b_3 + b_2 + b_1) = COL(a + b'_2d + b'_1d)$ (We made sure $b'_1 + b'_2 \le 2T(c)$.)

Thm $(\forall n, c)(\exists U = U(n, c))$ st $\forall \text{ COL} : [U] \rightarrow [c] \exists b_1 < \cdots < b_n$ st

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm $(\forall n, c)(\exists U = U(n, c))$ st \forall COL : $[U] \rightarrow [c] \exists b_1 < \cdots < b_n$ st 2) $(\forall I \subseteq \{1\})[$ COL $(b_2 + \sum_{i \in I} b_i)$ same color].

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm $(\forall n, c)(\exists U = U(n, c))$ st $\forall \text{ COL} : [U] \rightarrow [c] \exists b_1 < \cdots < b_n$ st 2) $(\forall I \subseteq \{1\})[\text{COL}(b_2 + \sum_{i \in I} b_i) \text{ same color}].$ 3) $(\forall I \subseteq \{1, 2\})[\text{COL}(b_3 + \sum_{i \in I} b_i) \text{ same color }].$:

Thm
$$(\forall n, c)(\exists U = U(n, c))$$
 st $\forall \text{COL} : [U] \rightarrow [c] \exists b_1 < \cdots < b_n$ st
2) $(\forall I \subseteq \{1\})[\text{COL}(b_2 + \sum_{i \in I} b_i) \text{ same color}].$
3) $(\forall I \subseteq \{1, 2\})[\text{COL}(b_3 + \sum_{i \in I} b_i) \text{ same color }].$
:
 $n-1) (\forall I \subseteq \{1, \ldots, n-2\})[\text{COL}(b_{n-1} + \sum_{i \in I} b_i) \text{ same color}]$

・ロト・日本・日本・日本・日本・日本

Thm
$$(\forall n, c)(\exists U = U(n, c))$$
 st $\forall \text{COL} : [U] \rightarrow [c] \exists b_1 < \cdots < b_n$ st
2) $(\forall I \subseteq \{1\})[\text{COL}(b_2 + \sum_{i \in I} b_i) \text{ same color}].$
3) $(\forall I \subseteq \{1, 2\})[\text{COL}(b_3 + \sum_{i \in I} b_i) \text{ same color }].$
 \vdots
 $n-1) (\forall I \subseteq \{1, \ldots, n-2\})[\text{COL}(b_{n-1} + \sum_{i \in I} b_i) \text{ same color}]$
 $n) (\forall I \subseteq \{1, \ldots, n-1\})[\text{COL}(b_n + \sum_{i \in I} b_i) \text{ same color}]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Thm
$$(\forall n, c)(\exists U = U(n, c))$$
 st $\forall \text{COL} : [U] \rightarrow [c] \exists b_1 < \cdots < b_n$ st
2) $(\forall I \subseteq \{1\})[\text{COL}(b_2 + \sum_{i \in I} b_i) \text{ same color}].$
3) $(\forall I \subseteq \{1, 2\})[\text{COL}(b_3 + \sum_{i \in I} b_i) \text{ same color }].$
:
 $n-1) (\forall I \subseteq \{1, \ldots, n-2\})[\text{COL}(b_{n-1} + \sum_{i \in I} b_i) \text{ same color}]$
 $n) (\forall I \subseteq \{1, \ldots, n-1\})[\text{COL}(b_n + \sum_{i \in I} b_i) \text{ same color}]$
Will prove on next slides.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$.

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n-1, c). U(n, c) = 2W(k, c). 2 blocks.

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. Block2 has W(k, c).

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. Block2 has W(k, c). $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color e]

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. Block2 has W(k, c). $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color e] a will be b_n .

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. Block2 has W(k, c). $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color e] a will be b_n . Block1 Can show $W(k, c) \ge dU(n - 1, c)$ so can use induction and div version.

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. Block2 has W(k, c). $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color e] a will be b_n . Block1 Can show $W(k, c) \ge dU(n - 1, c)$ so can use induction and div version. $\exists b_1 < \cdots < b_{n-1}$ (all div by d)

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. **Block2** has W(k, c). $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color e] a will be b_n . **Block1** Can show $W(k, c) \ge dU(n - 1, c)$ so can use induction and div version. $\exists b_1 < \cdots < b_{n-1}$ (all div by d) $2,3,\ldots,n-1$) Parts $2,\ldots,n-1$ of Thm hold by Ind Hyp.

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. Block2 has W(k, c). $(\exists a, d)[a, a + d, ..., a + (k - 1)d$ same color e] a will be b_n . Block1 Can show $W(k, c) \ge dU(n - 1, c)$ so can use induction and div version. $\exists b_1 < \cdots < b_{n-1}$ (all div by d) 2,3,..., n - 1) Parts 2,..., n - 1 of Thm hold by Ind Hyp. n) All of the b_i s are div by d. So $b_i = db'_i$.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. **Block2** has W(k, c). $(\exists a, d)[a, a + d, \dots, a + (k - 1)d$ same color e] a will be b_n . **Block1** Can show $W(k, c) \geq dU(n-1, c)$ so can use induction and div version. $\exists b_1 < \cdots < b_{n-1}$ (all div by d) $2,3,\ldots,n-1$) Parts $2,\ldots,n-1$ of Thm hold by Ind Hyp. n) All of the b_i s are div by d. So $b_i = db'_i$. $\operatorname{COL}(b_n + \sum_{i \in I} b_i) = \operatorname{COL}(b_n + d \sum_{i \in I} b_i')$ By VDW Thm on Block2.

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. **Block2** has W(k, c). $(\exists a, d)[a, a + d, \dots, a + (k - 1)d$ same color e] a will be b_n . **Block1** Can show $W(k, c) \geq dU(n-1, c)$ so can use induction and div version. $\exists b_1 < \cdots < b_{n-1}$ (all div by d) $2,3,\ldots,n-1$) Parts $2,\ldots,n-1$ of Thm hold by Ind Hyp. n) All of the b_i s are div by d. So $b_i = db'_i$. $\operatorname{COL}(b_n + \sum_{i \in I} b_i) = \operatorname{COL}(b_n + d \sum_{i \in I} b_i)$ By VDW Thm on Block2. (We made sure $\sum_{i=1}^{n-1} b'_i < k$.)

Fix c. U is TBD. Assume there COL: $[U] \rightarrow [c]$. Let k = 2U(n - 1, c). U(n, c) = 2W(k, c). 2 blocks. **Block2** has W(k, c). $(\exists a, d)[a, a + d, \dots, a + (k - 1)d$ same color e] a will be b_n . **Block1** Can show $W(k, c) \geq dU(n-1, c)$ so can use induction and div version. $\exists b_1 < \cdots < b_{n-1}$ (all div by d) 2,3,..., n-1) Parts 2,..., n-1 of Thm hold by Ind Hyp. n) All of the b_i s are div by d. So $b_i = db'_i$. $\operatorname{COL}(b_n + \sum_{i \in I} b_i) = \operatorname{COL}(b_n + d \sum_{i \in I} b_i')$ By VDW Thm on Block2. (We made sure $\sum_{i=1}^{n-1} b'_i < k$.) Donel

Folkman's Theorem (Statement)

Thm $(\forall n, c)(\exists F = F(n, c))(\forall \text{COL}[F] \rightarrow [c])(\exists x_1, \ldots, x_n)$ st all of the sums of elements of $\{x_1, \ldots, x_n\}$ are the same color

Folkman's Theorem (Statement)

Thm $(\forall n, c)(\exists F = F(n, c))(\forall \text{COL}[F] \rightarrow [c])(\exists x_1, \ldots, x_n)$ st all of the sums of elements of $\{x_1, \ldots, x_n\}$ are the same color We do c = 2 and leave the case of general c colors to the reader.

ション ふゆ アメビア メロア しょうくり

Folkman's Theorem (Statement)

Thm $(\forall n, c)(\exists F = F(n, c))(\forall \text{COL}[F] \rightarrow [c])(\exists x_1, \ldots, x_n)$ st all of the sums of elements of $\{x_1, \ldots, x_n\}$ are the same color We do c = 2 and leave the case of general c colors to the reader. Proof on Next Slide.

ション ふゆ アメビア メロア しょうくり

(4日) (個) (目) (目) (目) (1000)

$$F(n,2) = U(2n-1,2).$$

$$\begin{split} F(n,2) &= U(2n-1,2).\\ \text{By prior thm } (\exists b_1,\ldots,b_{2n-1})\\ \text{All sums with max elt } b_1 \text{ are colored } c_1\\ \text{All sums with max elt } b_2 \text{ are colored } c_2 \end{split}$$

F(n,2) = U(2n-1,2).By prior thm $(\exists b_1, \dots, b_{2n-1})$ All sums with max elt b_1 are colored c_1 All sums with max elt b_2 are colored c_2

All sums with max elt b_{2n-1} are colored c_{2n-1}


```
F(n,2) = U(2n-1,2).
By prior thm (\exists b_1, \ldots, b_{2n-1})
All sums with max elt b_1 are colored c_1
All sums with max elt b_2 are colored c_2
All sums with max elt b_{2n-1} are colored c_{2n-1}
Look at c_1, \ldots, c_{2n-1}. n of them are the same color, say R.
Call those n x_1, \ldots, x_n.
All sums with max elt x_1 are colored R
All sums with max elt x_2 are colored R
```

```
F(n,2) = U(2n-1,2).
By prior thm (\exists b_1, \ldots, b_{2n-1})
All sums with max elt b_1 are colored c_1
All sums with max elt b_2 are colored c_2
All sums with max elt b_{2n-1} are colored c_{2n-1}
Look at c_1, \ldots, c_{2n-1}. n of them are the same color, say R.
Call those n x_1, \ldots, x_n.
All sums with max elt x_1 are colored R
All sums with max elt x_2 are colored R
```

ション ふぼう メリン メリン しょうくしゃ

All sums with max elt x_n are colored R

```
F(n,2) = U(2n-1,2).
By prior thm (\exists b_1, \ldots, b_{2n-1})
All sums with max elt b_1 are colored c_1
All sums with max elt b_2 are colored c_2
All sums with max elt b_{2n-1} are colored c_{2n-1}
Look at c_1, \ldots, c_{2n-1}. n of them are the same color, say R.
Call those n x_1, \ldots, x_n.
All sums with max elt x_1 are colored R
All sums with max elt x_2 are colored R
All sums with max elt x_n are colored R
Hence all sums of \{x_1, \ldots, x_n\} are R.
```

```
F(n,2) = U(2n-1,2).
By prior thm (\exists b_1, \ldots, b_{2n-1})
All sums with max elt b_1 are colored c_1
All sums with max elt b_2 are colored c_2
All sums with max elt b_{2n-1} are colored c_{2n-1}
Look at c_1, \ldots, c_{2n-1}. n of them are the same color, say R.
Call those n x_1, \ldots, x_n.
All sums with max elt x_1 are colored R
All sums with max elt x_2 are colored R
All sums with max elt x_n are colored R
Hence all sums of \{x_1, \ldots, x_n\} are R.
Donel
```