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Recall Schur’'s Thm

Thm (Vc)(3S = S(¢)) st V COL : [S]—]c] Ix,y,z st
» COL(x) = COL(y) = COL(z2)
> x+y==z

We can view this another way:

COL(x) = COL(y) = COL(x + y).

We want the following extension: 3x,y, z

COL(x) = COL(y) = COL(z2)

= COL(x + y) = COL(x + z) = COL(y + z)

= COL(x + y + z).

More generally, we want all non-empty sums are the same color.
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Thm (Vc)(3T = T(c)) st V COL : [T]—[c] 3b1 < by st
COL(by) = COL(b; + by)

Let T = 3c (this is prob not optimal).

Look at 2c 4+ 0,...,2c + c.

(30 < i < j < ¢)[COL(2¢ + i) = COL(2¢ + j)].

by=j—1i

by =2c+i

Note b; < by easy.

COL(by) = COL(2c + 1)

COL(b1 + by) = COL((j — i) + (2¢c + 7)) = COL(2¢ + ).
Note b; < by thm follows from Schur, but we wanted elt proof.
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Thm (Vc,d)(3T = T(c)d) st V COL : [T]—[c] 3b1 < by st
COL(by) = COL(by + by) AND by < by AND

bi, by =0 (mod d).
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(30 < i < j < ¢)[COL((2¢ + i)d) = COL((2¢ + j)d)].
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Note b; < by easy.
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Thm (Vc)(3U = U(c)) st V COL : [U]—[c] 3b1 < by < b3 st
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Will prove on next slides.

We later show general case of by < --- < b,,.
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Proof of b; < by, < b3 Theorem

Fix c. U is TBD. Assume there is COL: [U]—|c].

U will be in two blocks, both very large.

Block2 will be W(k, c) where k is TBD.
(Ja,d)[a,a+d,...,a+ (k — 1)d same color | a will be bs.
Note that d < W

Blockl We Want Blockl > T(c,d) = T(c)d.

Don't know d. Boo! But know d < Y59 < (K, ¢). Yeah!
So take Blockl to be T(c)W/(k,c).

Blockl has

{byd, b5d} (using div by d version) st
1) by, b, < T(c).

2) COL(b,d) = COL(bbd + b,d).
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Recap proof so far

Block2 has a,d st a,a+d,...,a+ (k — 1)d same color.
Blockl has {b}d, byd} st

1) b, b5 < T(c).

2) COL(byd) = COL(byd + bd).

We set by = bjd by = bhd b3 =a

COL(by + b1) = COL(by) since we applied by < by Thm.
COL(b3+ bo + b1) = COL(a+ byd + bjd) = COL(a+ (b5 + by)d).
Need bj, + by < k.

COL(bs + by) = COL(a + b,d). Need b, < k

COL(bs + by) = COL(a + bd). Need b, < k

Upshot Need b} + b} < k. Take k =2T(c) = 6c.
Block2 is W(6c, c) Block1 is 3cW(6c, c).

U(c) = 3cW(6c, c) + W(6bc,c) = (3c + 1) W(6c, ¢).



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e

By b1 < by thm, 1st part have by < by, both div by d,
COL(bz + bl) = COL(bz).



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e

By b1 < by thm, 1st part have by < by, both div by d,
COL(bz + bl) = COL(bz).
Pick

b1 = blld < b= béd < b3=a



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e
By b1 < by thm, 1st part have by < by, both div by d,

COL(bz + bl) = COL(bz).
Pick
b1 = blld < b= béd < b3=a

COL(by + b1) = COL(by) from by < by Theorem.



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e
By b1 < by thm, 1st part have by < by, both div by d,

COL(bz + bl) = COL(bz).
Pick
b1 = blld < b= béd < b3=a

COL(by + b1) = COL(by) from by < by Theorem.
COL(b3 + by) = COL(a + bhd) (We made sure by < 2T (c).)



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e

By b1 < by thm, 1st part have by < by, both div by d,
COL(bz + bl) = COL(bz).
Pick

b1 = blld < b= béd < b3=a

COL(by + b1) = COL(by) from by < by Theorem.
COL(b3 + by) = COL(a + bhd) (We made sure by < 2T (c).)
COL(b3 + b1) = COL(a + bjd) (We made sure b} < 2T (c).)



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e

By b1 < by thm, 1st part have by < by, both div by d,
COL(bz + bl) = COL(bz).
Pick

b1 = blld < b= béd < b3=a

COL(b2 + b1) = COL(bo) from by < by Theorem.

COL(b3 + by) = COL(a + bhd) (We made sure by < 2T (c).)
COL(b3 + b1) = COL(a + bjd) (We made sure b} < 2T (c).)
COL(bs + by + by) = COL(a + byd + b,d)



Summarize Proof

U =2W(k,c) where k =2W(dT(c),c).
VDW-in 2nd part: a,a+d,...,a+ (k—1)d all colored e

By b1 < by thm, 1st part have by < by, both div by d,
COL(bz + bl) = COL(bz).

Pick
b1 = blld < b= béd < b3=a

COL(b2 + b1) = COL(bo) from by < by Theorem.
COL(b3 + by) = COL(a + bhd) (We made sure by < 2T (c).)
COL(b3 + b1) = COL(a + bjd) (We made sure b} < 2T (c).)

COL(b3 + by + b1) = COL(a + bhd + bid)
(We made sure b} + b, <2T(c).)
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by < .-+ < b, Theorem

Thm (Vn, c)(3U = U(n,c)) st ¥V COL : [U]—[c] 3b1 < -+ < b, st
2) (VI € {1})[COL(b2 + >, bi) same color].
3) (VI € {1,2})[COL(b3 + ;¢ bi) same color |.

n—1) (VI €{1,...,n—2})[COL(bs—1 + >_;c; bi) same color]
n) (VI € {1,...,n—1})[COL(b, + >_,c; bi) same color]

Will prove on next slides.
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Fix c. U is TBD. Assume there COL: [U]—|c].

Let k =2U(n—1,c). U(n,c) =2W(k,c). 2 blocks.
Block2 has W(k, c).

(Ja,d)[a,a+d,...,a+ (k—1)d same color e] a will be by,.

Blockl Can show W(k,c) > dU(n— 1, c) so can use induction
and div version.

dby < -+ < by—1 (all div by d)

23,...,n—1) Parts 2,...,n—1 of Thm hold by Ind Hyp.

n) All of the bjs are div by d. So b; = db/.

COL(by + > "¢y bi) = COL(b, +d ;¢ bi)

By VDW Thm on Block2.

(We made sure S>71 b} < k.)

Donel
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Proof on Next Slide.
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Folkman’s Theorem (Proof)

F(n,2) = U(2n—1,2).

By prior thm (3by, ..., bap_1)

All sums with max elt by are colored ¢;
All sums with max elt by are colored ¢

All sums with max elt by,_1 are colored ¢p,_1

Look at c1,...,cn_1. n of them are the same color,say R.
Call those n xi,...,x,.

All sums with max elt x; are colored R

All sums with max elt x» are colored R

All sums with max elt x, are colored R
Hence all sums of {x1,...,x,} are R.

Done!



