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Recall Schur’s Thm

Thm (∀c)(∃S = S(c)) st ∀ COL : [S ]→[c] ∃x , y , z st

I COL(x) = COL(y) = COL(z)

I x + y = z

We can view this another way:

COL(x) = COL(y) = COL(x + y).

We want the following extension: ∃x , y , z
COL(x) = COL(y) = COL(z)
= COL(x + y) = COL(x + z) = COL(y + z)
= COL(x + y + z).
More generally, we want all non-empty sums are the same color.
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b1 < b2 Theorem

Thm (∀c)(∃T = T (c)) st ∀ COL : [T ]→[c] ∃b1 < b2 st
COL(b2) = COL(b1 + b2)

Let T = 3c (this is prob not optimal).

Look at 2c + 0, . . . , 2c + c .
(∃0 ≤ i < j ≤ c)[COL(2c + i) = COL(2c + j)].

b1 = j − i

b2 = 2c + i

Note b1 < b2 easy.

COL(b2) = COL(2c + i)

COL(b1 + b2) = COL((j − i) + (2c + i)) = COL(2c + j).

Note b1 < b2 thm follows from Schur, but we wanted elt proof.
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b1 < b2 Theorem With Divisibility

Thm (∀c, d)(∃T = T (c)d) st ∀ COL : [T ]→[c] ∃b1 < b2 st
COL(b2) = COL(b1 + b2) AND b1 < b2 AND
b1, b2 ≡ 0 (mod d).

Let T (c , d) = T (c)d = 3cd (this is prob not optimal).

Look at (2c + 0)d , . . . , (2c + c)d .
(∃0 ≤ i < j ≤ c)[COL((2c + i)d) = COL((2c + j)d)].

b1 = (j − i)d

b2 = (2c + i)d

Note b1 < b2 easy.

COL(b2) = COL((2c + i)d)

COL(b1 + b2) = COL((j − i)d + (2c + i)d) = COL((2c + j)d).
WRITE DOWN WHAT T (c , d) MEANS FOR LATER USE.
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b1 < b2 < b3 Theorem

Thm (∀c)(∃U = U(c)) st ∀ COL : [U]→[c] ∃b1 < b2 < b3 st

COL(b3) = COL(b3 + b1) = COL(b3 + b2) = COL(b3 + b2 + b1).
COL(b2) = COL(b1 + b2)

Can Restate As
All sums with last term b3 have same color
All sums with last term b2 have same color
All sums with last term b1 have same color (trivial).
Note that these can be different colors.

Will prove on next slides.

We later show general case of b1 < · · · < bn.
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Proof of b1 < b2 < b3 Theorem

Fix c . U is TBD. Assume there is COL : [U]→[c].

U will be in two blocks, both very large.

Block2 will be W (k , c) where k is TBD.
(∃a, d)[a, a + d , . . . , a + (k − 1)d same color ] a will be b3.

Note that d ≤ W (k,c)
k .

Block1 We Want Block1 ≥ T (c , d) = T (c)d .

Don’t know d . Boo! But know d ≤ W (k,c)
k ≤W (k , c). Yeah!

So take Block1 to be T (c)W (k, c).

Block1 has
{b′1d , b′2d} (using div by d version) st
1) b′1, b

′
2 ≤ T (c).

2) COL(b′2d) = COL(b′2d + b′1d).
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COL(b2 + b1) = COL(b2) since we applied b1 < b2 Thm.

COL(b3 +b2 +b1) = COL(a+b′2d +b′1d) = COL(a+ (b′2 +b′1)d).
Need b′2 + b′1 ≤ k .

COL(b3 + b1) = COL(a + b′1d). Need b′1 ≤ k

COL(b3 + b2) = COL(a + b′2d). Need b′2 ≤ k

Upshot Need b′2 + b′1 ≤ k . Take k = 2T (c) = 6c .
Block2 is W (6c , c) Block1 is 3cW (6c , c).

U(c) = 3cW (6c , c) + W (6c , c) = (3c + 1)W (6c , c).
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Summarize Proof

U = 2W (k, c) where k = 2W (dT (c), c).

VDW-in 2nd part: a, a + d , . . . , a + (k − 1)d all colored e

By b1 < b2 thm, 1st part have b1 < b2, both div by d ,
COL(b2 + b1) = COL(b2).

Pick

b1 = b′1d < b2 = b′2d < b3 = a

COL(b2 + b1) = COL(b2) from b1 < b2 Theorem.

COL(b3 + b2) = COL(a + b′2d) (We made sure b′2 ≤ 2T (c).)

COL(b3 + b1) = COL(a + b′1d) (We made sure b′1 ≤ 2T (c).)

COL(b3 + b2 + b1) = COL(a + b′2d + b′1d)
(We made sure b′1 + b′2 ≤ 2T (c).)
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b1 < · · · < bn Theorem

Thm (∀n, c)(∃U = U(n, c)) st ∀ COL : [U]→[c] ∃b1 < · · · < bn st

2) (∀I ⊆ {1})[COL(b2 +
∑

i∈I bi ) same color].

3) (∀I ⊆ {1, 2})[COL(b3 +
∑

i∈I bi ) same color ].
...

n − 1) (∀I ⊆ {1, . . . , n − 2})[COL(bn−1 +
∑

i∈I bi ) same color]

n) (∀I ⊆ {1, . . . , n − 1})[COL(bn +
∑

i∈I bi ) same color]

Will prove on next slides.
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Proof of b1 < · · · < bn Theorem

Fix c . U is TBD. Assume there COL : [U]→[c].

Let k = 2U(n − 1, c). U(n, c) = 2W (k , c). 2 blocks.

Block2 has W (k, c).
(∃a, d)[a, a + d , . . . , a + (k − 1)d same color e] a will be bn.

Block1 Can show W (k , c) ≥ dU(n − 1, c) so can use induction
and div version.
∃b1 < · · · < bn−1 (all div by d)
2,3,. . . , n − 1) Parts 2, . . . , n − 1 of Thm hold by Ind Hyp.
n) All of the bi s are div by d . So bi = db′i .
COL(bn +

∑
i∈I bi ) = COL(bn + d

∑
i∈I b

′
i )

By VDW Thm on Block2.
(We made sure

∑n−1
i=1 b′i ≤ k .)

Done!
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Folkman’s Theorem (Statement)

Thm (∀n, c)(∃F = F (n, c))(∀COL[F ]→[c])(∃x1, . . . , xn) st
all of the sums of elements of {x1, . . . , xn} are the same color

We do c = 2 and leave the case of general c colors to the reader.

Proof on Next Slide.
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Folkman’s Theorem (Proof)

F (n, 2) = U(2n − 1, 2).

By prior thm (∃b1, . . . , b2n−1)
All sums with max elt b1 are colored c1
All sums with max elt b2 are colored c2
...
All sums with max elt b2n−1 are colored c2n−1

Look at c1, . . . , c2n−1. n of them are the same color,say R.
Call those n x1, . . . , xn.
All sums with max elt x1 are colored R
All sums with max elt x2 are colored R
...
All sums with max elt xn are colored R

Hence all sums of {x1, . . . , xn} are R.

Done!
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