
A DECIDABLE
THEORY: (Q,<)

Variables and Symbols for (Q,<)

Consider the following language.

1. The logical symbols ∧, ¬, (∃).
2. Variables x , y , z , . . . that range over Q.

3. Constants: all elements of Q.

4. The symbols < and =. Note We do not have + or ×.

Variables and Symbols for (Q,<)

Consider the following language.

1. The logical symbols ∧, ¬, (∃).

2. Variables x , y , z , . . . that range over Q.

3. Constants: all elements of Q.

4. The symbols < and =. Note We do not have + or ×.

Variables and Symbols for (Q,<)

Consider the following language.

1. The logical symbols ∧, ¬, (∃).
2. Variables x , y , z , . . . that range over Q.

3. Constants: all elements of Q.

4. The symbols < and =. Note We do not have + or ×.

Variables and Symbols for (Q,<)

Consider the following language.

1. The logical symbols ∧, ¬, (∃).
2. Variables x , y , z , . . . that range over Q.

3. Constants: all elements of Q.

4. The symbols < and =. Note We do not have + or ×.

Variables and Symbols for (Q,<)

Consider the following language.

1. The logical symbols ∧, ¬, (∃).
2. Variables x , y , z , . . . that range over Q.

3. Constants: all elements of Q.

4. The symbols < and =. Note We do not have + or ×.

Atomic Formulas

An Atomic Formula is:

1. For any variables x , y ,

x < y

and

x = y

are Atomic Formulas.

Atomic Formulas

An Atomic Formula is:

1. For any variables x , y ,

x < y

and

x = y

are Atomic Formulas.

Atomic Formulas

An Atomic Formula is:

1. For any variables x , y ,

x < y

and

x = y

are Atomic Formulas.

Atomic Formulas

An Atomic Formula is:

1. For any variables x , y ,

x < y

and

x = y

are Atomic Formulas.

Atomic Formulas

An Atomic Formula is:

1. For any variables x , y ,

x < y

and

x = y

are Atomic Formulas.

Atomic Formulas

An Atomic Formula is:

1. For any variables x , y ,

x < y

and

x = y

are Atomic Formulas.

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,

2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

QL Formulas

A (Q,<) Formula is:

1. Any Atomic Formula is a (Q, <) Formula.

2. If ϕ1, ϕ2 are (Q, <) Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a QL Formula then so is (∃xi)[ϕ(x1, . . . , xn)]

The Theory of (Q, <)

The following problem is decidable.

▶ Input ϕ, a sentence in (Q, <).

▶ Determine if ϕ is TRUE.

The Theory of (Q, <)

The following problem is decidable.

▶ Input ϕ, a sentence in (Q, <).

▶ Determine if ϕ is TRUE.

The Theory of (Q, <)

The following problem is decidable.

▶ Input ϕ, a sentence in (Q, <).

▶ Determine if ϕ is TRUE.

An Example of Quantifier Elimination
Example of Procedure

(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y

Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination
Example of Procedure
(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y] ∨ (∃y)[w < y < x] ∨ (∃y)[w < y = x]]

Can then look at each piece separately.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .
So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .
So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .
So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .

So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .
So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .
So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃y)[w < x < y] is TRUE iff w < x is TRUE. So can ELIM y .

(∃y)[w < y < x] is TRUE iff w < x is TRUE. So can ELIM y .

(∃w , x , y)[w < y = x] is TRUE iff w < x is TRUE. So ELIM y .
So

(∃w)(∀x)[(∃y)[w < x < y]∨(∃y)[w < y < x]∨(∃y)[w < y = x]] ≡

(∃w)(∀x)[(∃y)[w < x] ∨ (∃y)[w < x] ∨ (∃y)[w < x]] ≡

(∃w)(∀x)[(w < x) ∨ (w < x) ∨ (w < x))] ≡ (∃w)(∀x)[w < x]

Key We elim a ∃y ! That elim clauses is incidental.

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah
But we have a ∀ quantifier. Boo
But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah

But we have a ∀ quantifier. Boo
But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah
But we have a ∀ quantifier. Boo

But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah
But we have a ∀ quantifier. Boo
But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah
But we have a ∀ quantifier. Boo
But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah
But we have a ∀ quantifier. Boo
But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)(∀x)[w < x]

We can ELIM a ∃ quantifier. Yeah
But we have a ∀ quantifier. Boo
But recall that ∀ ≡ ¬∃¬. Yeah

(∃w)¬(∃x)¬[w < x] ≡

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃x)[x ≤ w] ≡ TRUE

An Example of Quantifier Elimination (cont)

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃w)¬(∃x)[x ≤ w] ≡ (∃w)[¬TRUE] ≡

(∃w)[FALSE] ≡ FALSE

So the original statement is FALSE.

An Example of Quantifier Elimination (cont)

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃w)¬(∃x)[x ≤ w] ≡ (∃w)[¬TRUE] ≡

(∃w)[FALSE] ≡ FALSE

So the original statement is FALSE.

An Example of Quantifier Elimination (cont)

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃w)¬(∃x)[x ≤ w] ≡ (∃w)[¬TRUE] ≡

(∃w)[FALSE] ≡ FALSE

So the original statement is FALSE.

An Example of Quantifier Elimination (cont)

(∃w)¬(∃x)[x ≤ w]

Look at the inner part:

(∃w)¬(∃x)[x ≤ w] ≡ (∃w)[¬TRUE] ≡

(∃w)[FALSE] ≡ FALSE

So the original statement is FALSE.

Lemma on Quantifier Elimination

Lemma ∃ an algorithm that will, given a sentence of the form

(Q1x1) · · · (Qn−1xn−1)(∃xn)[ϕ(x1, . . . , xn)]

(where the Qi are quantifiers) return a sentence of the form

(Q1x1) · · · (Qn−1xn−1)[ϕ
′(x1, . . . , xn−1)]

Replace ϕ(x1, . . . , xn) with an OR of all poss. orderings of
x1, . . . , xn.
Then replace

(∃xn)[L1(x1, . . . , xn) ∨ · · · ∨ Lm(x1, . . . , xn)] with
(∃xn)[L1(x1, . . . , xn)] ∨ · · · ∨ (∃xn)[Lm(x1, . . . , xn)].
Each part is either ≡ to the part with xn removed OR T or F.

Lemma on Quantifier Elimination

Lemma ∃ an algorithm that will, given a sentence of the form

(Q1x1) · · · (Qn−1xn−1)(∃xn)[ϕ(x1, . . . , xn)]

(where the Qi are quantifiers) return a sentence of the form

(Q1x1) · · · (Qn−1xn−1)[ϕ
′(x1, . . . , xn−1)]

Replace ϕ(x1, . . . , xn) with an OR of all poss. orderings of
x1, . . . , xn.

Then replace

(∃xn)[L1(x1, . . . , xn) ∨ · · · ∨ Lm(x1, . . . , xn)] with
(∃xn)[L1(x1, . . . , xn)] ∨ · · · ∨ (∃xn)[Lm(x1, . . . , xn)].
Each part is either ≡ to the part with xn removed OR T or F.

Lemma on Quantifier Elimination

Lemma ∃ an algorithm that will, given a sentence of the form

(Q1x1) · · · (Qn−1xn−1)(∃xn)[ϕ(x1, . . . , xn)]

(where the Qi are quantifiers) return a sentence of the form

(Q1x1) · · · (Qn−1xn−1)[ϕ
′(x1, . . . , xn−1)]

Replace ϕ(x1, . . . , xn) with an OR of all poss. orderings of
x1, . . . , xn.
Then replace

(∃xn)[L1(x1, . . . , xn) ∨ · · · ∨ Lm(x1, . . . , xn)] with
(∃xn)[L1(x1, . . . , xn)] ∨ · · · ∨ (∃xn)[Lm(x1, . . . , xn)].

Each part is either ≡ to the part with xn removed OR T or F.

Lemma on Quantifier Elimination

Lemma ∃ an algorithm that will, given a sentence of the form

(Q1x1) · · · (Qn−1xn−1)(∃xn)[ϕ(x1, . . . , xn)]

(where the Qi are quantifiers) return a sentence of the form

(Q1x1) · · · (Qn−1xn−1)[ϕ
′(x1, . . . , xn−1)]

Replace ϕ(x1, . . . , xn) with an OR of all poss. orderings of
x1, . . . , xn.
Then replace

(∃xn)[L1(x1, . . . , xn) ∨ · · · ∨ Lm(x1, . . . , xn)] with
(∃xn)[L1(x1, . . . , xn)] ∨ · · · ∨ (∃xn)[Lm(x1, . . . , xn)].
Each part is either ≡ to the part with xn removed OR T or F.

(Q,<) is Decidable: The Algorithm

Algorithm

1. (Q1x1) · · · (Qnxn)[ϕ(x1, . . . , xn)]. Replace ∀ with ¬∃¬.
2. Apply the Quant Elim Lemma over and over again until either

you end up with a TRUE or a FALSE or a sentence with one
variable whose truth will be easily discerned (see next slide for
more on that).

(Q,<) is Decidable: The Algorithm

Algorithm

1. (Q1x1) · · · (Qnxn)[ϕ(x1, . . . , xn)]. Replace ∀ with ¬∃¬.
2. Apply the Quant Elim Lemma over and over again until either

you end up with a TRUE or a FALSE or a sentence with one
variable whose truth will be easily discerned (see next slide for
more on that).

(Q,<) is Decidable: The Algorithm

Algorithm

1. (Q1x1) · · · (Qnxn)[ϕ(x1, . . . , xn)]. Replace ∀ with ¬∃¬.

2. Apply the Quant Elim Lemma over and over again until either
you end up with a TRUE or a FALSE or a sentence with one
variable whose truth will be easily discerned (see next slide for
more on that).

(Q,<) is Decidable: The Algorithm

Algorithm

1. (Q1x1) · · · (Qnxn)[ϕ(x1, . . . , xn)]. Replace ∀ with ¬∃¬.
2. Apply the Quant Elim Lemma over and over again until either

you end up with a TRUE or a FALSE or a sentence with one
variable whose truth will be easily discerned (see next slide for
more on that).

One Variable Sentences

We allow constants in the language, which are rationals.

We list all possible sentences with one variable. Let q ∈ Q.

1. (∃x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all TRUE.

2. (∀x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all FALSE.

One Variable Sentences

We allow constants in the language, which are rationals.

We list all possible sentences with one variable. Let q ∈ Q.

1. (∃x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all TRUE.

2. (∀x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all FALSE.

One Variable Sentences

We allow constants in the language, which are rationals.

We list all possible sentences with one variable. Let q ∈ Q.

1. (∃x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all TRUE.

2. (∀x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all FALSE.

One Variable Sentences

We allow constants in the language, which are rationals.

We list all possible sentences with one variable. Let q ∈ Q.

1. (∃x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all TRUE.

2. (∀x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all FALSE.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?

Can such theories be used to solve interesting open problems? No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems?

No.

Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn. We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn.

We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn. We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.

Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn. We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.

H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:

x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.
H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.

The Horse Numbers: H(4)

H(1) = 1 H(2) = 3 H(3) = 13.

Work with your neighbor to try to derive H(4).
Hint: You use H(2) and H(3).

The Horse Numbers: H(4)

H(1) = 1 H(2) = 3 H(3) = 13.
Work with your neighbor to try to derive H(4).
Hint: You use H(2) and H(3).

The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.

The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.

The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.

The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.

The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.

The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.

The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
(n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+

(
n

n

)
H(0).

The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
(n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+

(
n

n

)
H(0).

The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
(n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+

(
n

n

)
H(0).

The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
(n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+

(
n

n

)
H(0).

The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
(n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+

(
n

n

)
H(0).

The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
(n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+

(
n

n

)
H(0).

The Bill Numbers

B(n) is the number of ways n horses can finish GIVEN that
x1 < x2.

B(2) = 1

B(3) = 5.
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2
x1 = x3 < x2
x3 < x1 < x2

There may be a HW where you find B(4) and get a recurrence for
B(n). (The recurrence will also use the H numbers.)

The Bill Numbers

B(n) is the number of ways n horses can finish GIVEN that
x1 < x2.

B(2) = 1

B(3) = 5.
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2
x1 = x3 < x2
x3 < x1 < x2

There may be a HW where you find B(4) and get a recurrence for
B(n). (The recurrence will also use the H numbers.)

The Bill Numbers

B(n) is the number of ways n horses can finish GIVEN that
x1 < x2.

B(2) = 1

B(3) = 5.
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2
x1 = x3 < x2
x3 < x1 < x2

There may be a HW where you find B(4) and get a recurrence for
B(n). (The recurrence will also use the H numbers.)

The Bill Numbers

B(n) is the number of ways n horses can finish GIVEN that
x1 < x2.

B(2) = 1

B(3) = 5.
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2
x1 = x3 < x2
x3 < x1 < x2

There may be a HW where you find B(4) and get a recurrence for
B(n). (The recurrence will also use the H numbers.)

