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An Example of Quantifier Elimination
Example of Procedure

(∃w)(∀x)(∃y)[(w < x) ∧ (w < y)]

Question What orderings on x , y , z are consistent with
w < x ∧ w < y? Note that = is allowed.

w < y < x

w < x < y

w < x = y
Hence (∃w)(∀x)(∃y)[(w < x) ∧ (w < y)] is equiv to

(∃w)(∀x)(∃y)[(w < x < y) ∨ (w < y < x) ∨ (w < y = x)]

which is equiv to

(∃w)(∀x [(∃y)[w < x < y ] ∨ (∃y)[w < y < x ] ∨ (∃y)[w < y = x ]]

Can then look at each piece separately.
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Look at the inner part:

(∃x)[x ≤ w ] ≡ TRUE
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Lemma on Quantifier Elimination

Lemma ∃ an algorithm that will, given a sentence of the form

(Q1x1) · · · (Qn−1xn−1)(∃xn)[ϕ(x1, . . . , xn)]

(where the Qi are quantifiers) return a sentence of the form

(Q1x1) · · · (Qn−1xn−1)[ϕ
′(x1, . . . , xn−1)]

Replace ϕ(x1, . . . , xn) with an OR of all poss. orderings of
x1, . . . , xn.
Then replace

(∃xn)[L1(x1, . . . , xn) ∨ · · · ∨ Lm(x1, . . . , xn)] with
(∃xn)[L1(x1, . . . , xn)] ∨ · · · ∨ (∃xn)[Lm(x1, . . . , xn)].
Each part is either ≡ to the part with xn removed OR T or F.
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2. Apply the Quant Elim Lemma over and over again until either

you end up with a TRUE or a FALSE or a sentence with one
variable whose truth will be easily discerned (see next slide for
more on that).
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One Variable Sentences

We allow constants in the language, which are rationals.

We list all possible sentences with one variable. Let q ∈ Q.

1. (∃x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all TRUE.

2. (∀x)[x = q], (∃x)[x < q], (∃x)[x > q]. These are all FALSE.
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Is the Decidability Result Interesting?

(Q, <) is decidable! Great! We can take all of the open questions
about (Q, <) and use the decision procedure to solve them!

Two problems with this

1. The procedure to decide (Q, <) is slow. This might not be so
bad- there are better algorithms, and we have fast machines.

2. There are no interesting open questions about (Q, <). Thats
a bigger problem.

A contrast to H10:

1. H10 is undec. / since interesting math can be stated.

2. (Q, <) is dec. , but no math of interest can be stated/.

Are there any dec theories where you can state interesting math?
Can such theories be used to solve interesting open problems? No.
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Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn. We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.



Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn.

We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.



Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn. We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.



Interesting Combinatorics

Some interesting combinatorics arises from the dec procedure for
(Q, <).

1. How many ways you order x1, . . . , xn. We all know this is n!.

2. How many ways you order x1, . . . , xn if you allow =? Next
slide for examples and the first few numbers.



The Horse Numbers and H(3)

H(n) is the number of ways that n horses can finish a race. Note
that some could be tied.

H(2) = 3: x1 < x2, x2 < x1, x1 = x2.

H(3) we will derive. If x1 is unique least:
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2

There are 3 where x1 is unique least.

There are 3 where x2 is unique least.

There are 3 where x3 is unique least.

If x1 = x2 is least: x1 = x2 < x3. There is 1.

If x1 = x3 is least: x1 = x3 < x2. There is 1.

If x2 = x3 is least: x2 = x3 < x1. There is 1.

If x1 = x2 = x3 there is 1.

Total H(3) = 3 + 3 + 3 + 1 + 1 + 1 + 1 = 13.
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The Horse Numbers: H(4)

H(1) = 1 H(2) = 3 H(3) = 13.

Work with your neighbor to try to derive H(4).
Hint: You use H(2) and H(3).
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The Horse Numbers: H(4)

H(0) = 1 H(1) = 1 H(2) = 3 H(3) = 13.

1. There is ONE min.
(4
1

)
× H(3).

2. There are TWO mins.
(4
2

)
× H(2).

3. There are THREE mins.
(4
3

)
× H(1).

4. There are FOUR mins.
(4
4

)
× H(0).

Total

H(4) =

(
4

1

)
×H(3)+

(
4

2

)
×H(2)+

(
4

3

)
×H(1)+

(
4

0

)
×H(0) = 75.
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The Horse Numbers: Recurrence

H(n):

1) There is ONE min.
(n
1

)
× H(n − 1).

2) There are TWO mins.
(n
2

)
× H(n − 2).

...)

n − 1) There are n − 1 mins.
( n
n−1

)
× H(1).

n) There are n mins.
(n
n

)
× H(0).

H(n) =

(
n

1

)
H(n − 1) + · · ·+
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The Bill Numbers

B(n) is the number of ways n horses can finish GIVEN that
x1 < x2.

B(2) = 1

B(3) = 5.
x1 < x2 < x3
x1 < x2 = x3
x1 < x3 < x2
x1 = x3 < x2
x3 < x1 < x2

There may be a HW where you find B(4) and get a recurrence for
B(n). (The recurrence will also use the H numbers.)
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