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Nondeterministic Finite
Automata (NFA)



An Interesting Example of a DFA

With neighbor find DFA’s for the following. Note numb. states.
Σ∗a
Σ∗aΣ
Σ∗aΣ2



Σ∗aΣ2

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/

notes/dfa3.JPG

The number of states is 8.

More generally:
Σ∗aΣi can be done with 2i+1 states.

Prove for Σ∗aΣ3, with a table.

Might be on 2{HW, MIDTERM, FINAL}.

8 possibilities.

Is there a smaller DFA for Σ∗aΣi? Fewer than 2i+1 states? No.
We may prove this later.

We now use NFA’s informally.
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All You Need to Know About NFA’s For Now

1. From state q, and symbol σ may be ≥ 2 states to go to.

2. From a state q and no symbols there may be ≥ 1 states to go
to. (We use e for empty string.)

3. An NFA accepts a string if there is some way to process the
string and get to a final state.
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NFA for Σ∗aΣ2
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DFA had 8 states. NFA has 4 states.
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NFA for Σ∗aΣ3

Recall that DFA for Σ∗aΣ3 used 16 states.

Draw an NFA for Σ∗aΣ3.

How many states?

Make a conjecture for number of states for NFA for Σ∗aΣn.

Upshot Seems like NFA uses far fewer state than DFA for Σ∗aΣn.
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{w : #a(w) ≡ 0 (mod 3)∨#b(w) ≡ 0 (mod 4)}

The DFA for this requires 12 states. Can we do this with a smaller
NFA?

Vote

YES - next slide.
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The DFA for this requires 12 states. Can we do this with a smaller
NFA?

Vote

NO. Proof similar to that for DFA. May do both later.
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{an : n 6≡ 0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote

YES - next slide
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{an : n 6≡ 0 (mod 15)}

Prove that the NFA in the last slide works.
Need

(n 6≡ 0 (mod 3) ∨ n 6≡ 0 (mod 5)) =⇒ n 6≡ 0 (mod 15)

Take the contrapositive

n ≡ 0 (mod 15) =⇒ (n ≡ 0 (mod 3) ∧ n ≡ 0 (mod 5))



{an : n ≡ 0 (mod 15)}

Note A DFA for this requires 15 states. Can a smaller NFA
recognize it? Vote

NO. Proof similar to that for DFA. May do both later, after we
define NFA rigorously.
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NFA’s Intuitively

1. An NFA is a DFA that can guess.

2. NFAs do not really exist.

3. Good for ∪ since can guess which one.

4. An NFA accepts iff SOME guess accepts.

5. NFA’s are useful as intermediary devices.



NFA Formally

Def An NFA is a tuple (Q,Σ,∆, s,F ) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. ∆ : Q × (Σ ∪ {e})→ 2Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Def If M is an NFA and x ∈ Σ∗ then M(x) accepts if when you
run M on x some sequence of guesses end up in a final state.
Note When you run M(x) and choose a path one of three things
can happen: (1) ends in a final state, (2) ends in a non-final state,
(3) cannot process.
Def If M is an NFA then L(M) = {x : M(x) accepts }.
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Three Way to Think About NFAs

I Computational (with parallelism): Fork new computational
threads whenever there is a choice. Accept if any thread
accepts.

I Mathematical: Create tree with branches whenever there is a
choice. Accept if any leaf accepts.

I Magic: Guess at each nondeterministic step which way to go.
Machine always makes right guess if there is one.
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Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the
DFA.

2. We have NOT seen any langs that an NFA can accept but a
DFA cannot accept.

SO, is every NFA-lang also a DFA-lang? Vote. Yes.
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Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA (Q,Σ,∆, s,F ) where
∆ : Q × (Σ ∪ {e})→ 2Q .
First we get rid of the e-transitions.
Notation ∆(q, e iσe j) means that we take state q, feed in e i
times, then feed in σ, then feed in e j times. Do all possible
transitions so this will be a set of states.

∆1(q, σ) =
⋃

0≤i ,j≤n
∆(q, e iσe j).

NFA (Q,Σ,∆1, s,F ) accepts same lang as (Q,Σ,∆, s,F ).
We will work with an NFA that has NO e-transitions.
We are nowhere near done. Next slide.
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Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions
then L is accepted by a DFA with ≤ 2n states.

Pf L is accepted by NFA M = (Q,Σ,∆, s,F ) where
∆ : Q × Σ→ 2Q .
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA
could have been in.
DFA (2Q ,Σ, δ, {s},F ′). Need to define δ and F ′.
δ : 2Q × Σ→ 2Q .

δ(A, σ) =
⋃
q∈A

∆(q, σ).

F ′ = {A : A ∩ F 6= ∅}.

If NFA accepts on some path then in the DFA you will be in a state
which is a set-of-states, which includes a final state from the NFA.
If the DFA accepts then there was some way for the NFA to accept.
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DFA (2Q ,Σ, δ, {s},F ′). Need to define δ and F ′.
δ : 2Q × Σ→ 2Q .

δ(A, σ) =
⋃
q∈A

∆(q, σ).

F ′ = {A : A ∩ F 6= ∅}.

If NFA accepts on some path then in the DFA you will be in a state
which is a set-of-states, which includes a final state from the NFA.
If the DFA accepts then there was some way for the NFA to accept.
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