
BILL AND NATHAN
START RECORDING

Context Sensitive
Languages

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:

1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL

(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)

2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.

3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes?

(Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)

4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive?

(Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)

5) Languages that are CSL but not CFL.

Why Are Context Sensitive Languages Important

I am supposed to say
Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL’s is:
1) Languages that require a LARGE CFG but a SMALL CSL
(Research Project—no results yet.)
2) Closure properties of CSLs.
3) How does CSL compare to P and other classes? (Spoiler Alert:
We don’t know!)
4) Which languages are not context sensitive? (Spoiler Alert: very
few natural languages that are not CSL are known.)
5) Languages that are CSL but not CFL.

Historical Note on Linguistics

One of the motivations for CFL’s and CSL’s is an attempt to
model human language.
This was a success and a success.

1. While human language is far more complicated than CFL or
CSL; the Mathematical tools these grammars supply were a
helpful starting point.

2. Computer languages are far easier to understand since we
make them ourselves; hence, CFLs and (to a lesser extent)
CSL’s were useful within Computer Science.

Historical Note on Linguistics

One of the motivations for CFL’s and CSL’s is an attempt to
model human language.
This was a success and a success.

1. While human language is far more complicated than CFL or
CSL; the Mathematical tools these grammars supply were a
helpful starting point.

2. Computer languages are far easier to understand since we
make them ourselves; hence, CFLs and (to a lesser extent)
CSL’s were useful within Computer Science.

Historical Note on Linguistics

One of the motivations for CFL’s and CSL’s is an attempt to
model human language.
This was a success and a success.

1. While human language is far more complicated than CFL or
CSL; the Mathematical tools these grammars supply were a
helpful starting point.

2. Computer languages are far easier to understand since we
make them ourselves; hence, CFLs and (to a lesser extent)
CSL’s were useful within Computer Science.

Examples of Context Sensitive Grammars

S → ABCS | e
AB → BA (Note- We allow two nonterminals on the LHS.)
AC → CA
BC → CB
BA → AB
CA → AC
CB → BC
A → a
B → b
C → c

1) What lang does this generate?
{w : #a(w) = #b(w) = #c(w)} which is NOT a CFL.
2) Context-Free means can replace (say) A by (say) α without
looking at the context of A.
3) Context-Sensitive means can replace (say) A by (say) α AND
look at what is around A. We actually allow more than that.

Examples of Context Sensitive Grammars

S → ABCS | e
AB → BA (Note- We allow two nonterminals on the LHS.)
AC → CA
BC → CB
BA → AB
CA → AC
CB → BC
A → a
B → b
C → c
1) What lang does this generate?

{w : #a(w) = #b(w) = #c(w)} which is NOT a CFL.
2) Context-Free means can replace (say) A by (say) α without
looking at the context of A.
3) Context-Sensitive means can replace (say) A by (say) α AND
look at what is around A. We actually allow more than that.

Examples of Context Sensitive Grammars

S → ABCS | e
AB → BA (Note- We allow two nonterminals on the LHS.)
AC → CA
BC → CB
BA → AB
CA → AC
CB → BC
A → a
B → b
C → c
1) What lang does this generate?
{w : #a(w) = #b(w) = #c(w)} which is NOT a CFL.

2) Context-Free means can replace (say) A by (say) α without
looking at the context of A.
3) Context-Sensitive means can replace (say) A by (say) α AND
look at what is around A. We actually allow more than that.

Examples of Context Sensitive Grammars

S → ABCS | e
AB → BA (Note- We allow two nonterminals on the LHS.)
AC → CA
BC → CB
BA → AB
CA → AC
CB → BC
A → a
B → b
C → c
1) What lang does this generate?
{w : #a(w) = #b(w) = #c(w)} which is NOT a CFL.
2) Context-Free means can replace (say) A by (say) α without
looking at the context of A.

3) Context-Sensitive means can replace (say) A by (say) α AND
look at what is around A. We actually allow more than that.

Examples of Context Sensitive Grammars

S → ABCS | e
AB → BA (Note- We allow two nonterminals on the LHS.)
AC → CA
BC → CB
BA → AB
CA → AC
CB → BC
A → a
B → b
C → c
1) What lang does this generate?
{w : #a(w) = #b(w) = #c(w)} which is NOT a CFL.
2) Context-Free means can replace (say) A by (say) α without
looking at the context of A.
3) Context-Sensitive means can replace (say) A by (say) α AND
look at what is around A. We actually allow more than that.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)

S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$

X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e

So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:

BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB

CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC

CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC

Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$

C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c

$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.

Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {anbncn : n ∈ N}

(Warning I came up with this so its intuitive but might be wrong.)
S → $ABCX$
X → ABCX | e
So now have $ABCABCABCABC · · ·ABC$.

The next three rules get the A’s to the left and the C ’s to the right:
BA → AB
CA → AC
CB → BC
Can generate $AnBnCn$ but can also generate other strings.
Want to replace A with a, etc, but only if of form AnBnCn.

$A → a$
C$ → $c
$ → e

Grammar gen {anbncn}. Need that it doesn’t gen anything else.
Don’t know so won’t prove. Don’t care so no extra credit for it.

Context Sensitive Grammar for {an2
: n ∈ N}

I knew that {an2 : n ∈ N} is a CSL (will say why later).

I searched through books and the web to find a CSG for it since
students are our future! and you deserve to know this
grammar! (I sincerely meant this as a positive thing.)

I found an entry on Computer Science Stack Exchange so I do not
know if it is correct, though I suspect it is.
Link: https://cs.stackexchange.com/questions/53530/
grammar-for-square-numbers-in-unary

In case that link goes away (plausible) and you are really eager to
see the CSL (less plausible) next slide has the CSG for it (not
quite).

https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary
https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary

Context Sensitive Grammar for {an2
: n ∈ N}

I knew that {an2 : n ∈ N} is a CSL (will say why later).

I searched through books and the web to find a CSG for it since
students are our future! and you deserve to know this
grammar! (I sincerely meant this as a positive thing.)

I found an entry on Computer Science Stack Exchange so I do not
know if it is correct, though I suspect it is.
Link: https://cs.stackexchange.com/questions/53530/
grammar-for-square-numbers-in-unary

In case that link goes away (plausible) and you are really eager to
see the CSL (less plausible) next slide has the CSG for it (not
quite).

https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary
https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary

Context Sensitive Grammar for {an2
: n ∈ N}

I knew that {an2 : n ∈ N} is a CSL (will say why later).

I searched through books and the web to find a CSG for it since
students are our future! and you deserve to know this
grammar! (I sincerely meant this as a positive thing.)

I found an entry on Computer Science Stack Exchange so I do not
know if it is correct, though I suspect it is.
Link: https://cs.stackexchange.com/questions/53530/
grammar-for-square-numbers-in-unary

In case that link goes away (plausible) and you are really eager to
see the CSL (less plausible) next slide has the CSG for it (not
quite).

https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary
https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary

Context Sensitive Grammar for {an2
: n ∈ N}

I knew that {an2 : n ∈ N} is a CSL (will say why later).

I searched through books and the web to find a CSG for it since
students are our future! and you deserve to know this
grammar! (I sincerely meant this as a positive thing.)

I found an entry on Computer Science Stack Exchange so I do not
know if it is correct, though I suspect it is.
Link: https://cs.stackexchange.com/questions/53530/
grammar-for-square-numbers-in-unary

In case that link goes away (plausible) and you are really eager to
see the CSL (less plausible) next slide has the CSG for it (not
quite).

https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary
https://cs.stackexchange.com/questions/53530/grammar-for-square-numbers-in-unary

Context Sensitive Grammar for {an2
: n ∈ N}

FD → DG
AD → DaA
aD → Da
Aa → aA
BD → BH
Ha → aH
HA → AI
IA → AI
IG → AAF
FE → E
B → e
AE → E
E → e
(Last four rules not allowed in a CSG but this can be dealt with.)

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.

▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note

1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.

2) There are alternative definitions that are equivalent, which I
won’t get into here.

Definition of Context Sensitive Grammars

Def A Context Sensitive Grammar is a tuple G = (N,Σ,R,S)

▶ N is a finite set of nonterminals.

▶ Σ is a finite alphabet. Note Σ ∩ N = ∅.
▶ R ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ and are called Rules.

▶ Important For every rule the α → β, |α| ≤ |β|. (CSG’s are
given that violate this but can be put into this form.)

▶ S ∈ N, the start symbol.

Note
1) The LHS must have at least one nonterminal.
2) There are alternative definitions that are equivalent, which I
won’t get into here.

L(G)
If A is non-terminal then the CSG gives us gives us rules like:

▶ A → AB

▶ A → a

A ⇒ AAaASdD is valid when the RHS is a string of terminals
and non-terminals that can be produced from A (LHS is a single
non-terminal).
Examples: If we have rules
A → BCD
BC → BcA
BcA → Aa
...
Then we have
A → BCD → BcAD → AaD
So A ⇒ AaD
Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)
If A is non-terminal then the CSG gives us gives us rules like:

▶ A → AB

▶ A → a

A ⇒ AAaASdD is valid when the RHS is a string of terminals
and non-terminals that can be produced from A (LHS is a single
non-terminal).

Examples: If we have rules
A → BCD
BC → BcA
BcA → Aa
...
Then we have
A → BCD → BcAD → AaD
So A ⇒ AaD
Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)
If A is non-terminal then the CSG gives us gives us rules like:

▶ A → AB

▶ A → a

A ⇒ AAaASdD is valid when the RHS is a string of terminals
and non-terminals that can be produced from A (LHS is a single
non-terminal).
Examples: If we have rules
A → BCD
BC → BcA
BcA → Aa
...
Then we have
A → BCD → BcAD → AaD
So A ⇒ AaD

Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)
If A is non-terminal then the CSG gives us gives us rules like:

▶ A → AB

▶ A → a

A ⇒ AAaASdD is valid when the RHS is a string of terminals
and non-terminals that can be produced from A (LHS is a single
non-terminal).
Examples: If we have rules
A → BCD
BC → BcA
BcA → Aa
...
Then we have
A → BCD → BcAD → AaD
So A ⇒ AaD
Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

L(G)
If A is non-terminal then the CSG gives us gives us rules like:

▶ A → AB

▶ A → a

A ⇒ AAaASdD is valid when the RHS is a string of terminals
and non-terminals that can be produced from A (LHS is a single
non-terminal).
Examples: If we have rules
A → BCD
BC → BcA
BcA → Aa
...
Then we have
A → BCD → BcAD → AaD
So A ⇒ AaD
Then, if w is string of non-terminals only, we define L(G) by:

L(G) = {w ∈ Σ∗ | S ⇒ w}

Example of a Lang that is NOT a CSL

We’ll come back to this later.

CLOSURE PROPERTIES

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang?

Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang?

Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang?

Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang?

Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang?

Yes, Easy.

Closure Properties

If L1, L2 are Context Sensitive Languages then

1. Is L1 ∪ L2 a context sensitive Lang? Yes, Easy.

2. Is L1 ∩ L2 a context sensitive Lang? Yes, Hard.

3. Is L1 · L2 a context sensitive Lang? Yes, Easy.

4. Is L1 a context sensitive Lang? Yes, Hard.

5. IS L∗1 is a context sensitive Lang? Yes, Easy.

MISC

MISC

1) There is a no pumping theorem for CSL’s.

2) Recall:
DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s
LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:

DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s
LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:
DFA’s are Recognizers, Regex are Generators.

PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s
LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:
DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.

CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s
LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:
DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.

There is a Recognizer equivalent to it:
LBA’s

LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:
DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s

LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:
DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s
LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.

The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

MISC

1) There is a no pumping theorem for CSL’s.
2) Recall:
DFA’s are Recognizers, Regex are Generators.
PDA’s are Recognizers, CFG’s are Generators.
CSL’s are Generators.
There is a Recognizer equivalent to it:

LBA’s
LBA stands for Linear Bounded Automata.
They are nondeterministic Turing machines with O(n) space.
The proof that LBA-recognizers and CSG-generators are equivalent
is messy so we won’t be doing it. We won’t deal with LBA’s in this
course at all.

Later is Now

I said earlier:

I knew that {an2 : n ∈ N} is a CSL (will say why later).

It is easy to write an LBA for {an2 : n ∈ N}
Hence it is easy to show that {an2 : n ∈ N} and many other
languages are CSL’s without using CSG’s.

Later is Now

I said earlier:

I knew that {an2 : n ∈ N} is a CSL (will say why later).

It is easy to write an LBA for {an2 : n ∈ N}

Hence it is easy to show that {an2 : n ∈ N} and many other
languages are CSL’s without using CSG’s.

Later is Now

I said earlier:

I knew that {an2 : n ∈ N} is a CSL (will say why later).

It is easy to write an LBA for {an2 : n ∈ N}
Hence it is easy to show that {an2 : n ∈ N} and many other
languages are CSL’s without using CSG’s.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.

1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.

2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.

(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)

3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.

4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.

5) I know of one natural language that is provably not CSL:
Given two trex α and β, is L(α) = L(β).

Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).

Open question Some variants of Chess and Go might be
provably not CSL.

Example of a Lang that is NOT a CSL?

In this slide we only refer to decidable languages.
1) Not known how CSL and NP compare. Likely incomparable.
2) Proving incompatibility seems hard.
(Proving hard to show inc was part of my PhD Thesis.)
3) Proving a langauge is NOT CSL seems hard.
4) One can construct a (contrived) language that is NOT CSL.
5) I know of one natural language that is provably not CSL:

Given two trex α and β, is L(α) = L(β).
Open question Some variants of Chess and Go might be
provably not CSL.

Comparing Reg, CFL, CSL

We have a table of Reg, CFL, CSL.
Y is YES. N is NO
E is Easy. H is Hard.

Lang Rcg Gen ∪ ∩ · * comp PL

Reg DFA Rgx Y-E Y-E Y-E Y-E Y-E Y
CFG PDA CFG Y-E N-E Y-E Y-E N-E Y
CSG LBA CSG Y-E Y-H Y-E Y-E Y-E N

Comparing Reg, CFL, CSL

We have a table of Reg, CFL, CSL.
Y is YES. N is NO
E is Easy. H is Hard.
Lang Rcg Gen ∪ ∩ · * comp PL

Reg DFA Rgx Y-E Y-E Y-E Y-E Y-E Y
CFG PDA CFG Y-E N-E Y-E Y-E N-E Y
CSG LBA CSG Y-E Y-H Y-E Y-E Y-E N

1. Proving sets are not Regular is Easy.

2. Proving sets are not Context-Free is Easy.

3. Proving sets are not Context-Sensitive is Hard.

