
CLIQ ≤ SAT

Exposition by William Gasarch—U of MD

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.

Isaac That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given (G , k) produce ϕ such that

(G , k) ∈ CLIQ iff ϕ ∈ SAT

Isaac Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Isaac Why? Not practical since SAT is hard. Not theoretically
interesting since we already know CLIQ ≤ SAT.

Bill Because there are awesome SAT Solvers!

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.

That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).

If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

Old View, New View

Old View I want to solve CLIQ. Since SAT ≤ CLIQ, CLIQ is
probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that
CLIQ ≤ SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ ≤ SAT then to solve a
CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

2. Getting the reductions to not blow up is not always possible.

How to View CLIQ

Does G have a clique of size k?

We rephrase that:

Let G = (V ,E).

G has a clique of size k is equivalent to:
There is a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

How to View CLIQ

Does G have a clique of size k?

We rephrase that:

Let G = (V ,E).

G has a clique of size k is equivalent to:
There is a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

How to View CLIQ

Does G have a clique of size k?

We rephrase that:

Let G = (V ,E).

G has a clique of size k is equivalent to:
There is a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

How to View CLIQ

Does G have a clique of size k?

We rephrase that:

Let G = (V ,E).

G has a clique of size k is equivalent to:
There is a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

CLIQ ≤ SAT

We want to know:
Is there a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

We formulate this as a Boolean Formula.

For 1 ≤ i ≤ k , 1 ≤ j ≤ n, have Boolean Vars xij .

Intent

xij =

{
T if numb i maps to vertex j

F if numb i does not maps to vertex j
(1)

CLIQ ≤ SAT

We want to know:
Is there a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

We formulate this as a Boolean Formula.

For 1 ≤ i ≤ k , 1 ≤ j ≤ n, have Boolean Vars xij .

Intent

xij =

{
T if numb i maps to vertex j

F if numb i does not maps to vertex j
(1)

CLIQ ≤ SAT

We want to know:
Is there a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

We formulate this as a Boolean Formula.

For 1 ≤ i ≤ k , 1 ≤ j ≤ n, have Boolean Vars xij .

Intent

xij =

{
T if numb i maps to vertex j

F if numb i does not maps to vertex j
(1)

CLIQ ≤ SAT

We want to know:
Is there a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a,b ≤ k, (f (a), f (b)) ∈ E .

We formulate this as a Boolean Formula.

For 1 ≤ i ≤ k , 1 ≤ j ≤ n, have Boolean Vars xij .

Intent

xij =

{
T if numb i maps to vertex j

F if numb i does not maps to vertex j
(1)

Formula: xij Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j
For 1 ≤ i ≤ k

xi1 ∨ xi2 ∨ · · · ∨ xin

Every i maps to at at most one j
For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n

¬(xij1 ∧ xij2)

The mapping is 1-1
For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n

¬(xi1,j ∧ xi2,j)

Note So far all we’ve used about G is that it has n vertices.

Formula: xij Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j
For 1 ≤ i ≤ k

xi1 ∨ xi2 ∨ · · · ∨ xin

Every i maps to at at most one j
For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n

¬(xij1 ∧ xij2)

The mapping is 1-1
For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n

¬(xi1,j ∧ xi2,j)

Note So far all we’ve used about G is that it has n vertices.

Formula: xij Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j
For 1 ≤ i ≤ k

xi1 ∨ xi2 ∨ · · · ∨ xin

Every i maps to at at most one j
For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n

¬(xij1 ∧ xij2)

The mapping is 1-1
For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n

¬(xi1,j ∧ xi2,j)

Note So far all we’ve used about G is that it has n vertices.

Formula: xij Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j
For 1 ≤ i ≤ k

xi1 ∨ xi2 ∨ · · · ∨ xin

Every i maps to at at most one j
For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n

¬(xij1 ∧ xij2)

The mapping is 1-1
For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n

¬(xi1,j ∧ xi2,j)

Note So far all we’ve used about G is that it has n vertices.

Formula: xij Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j
For 1 ≤ i ≤ k

xi1 ∨ xi2 ∨ · · · ∨ xin

Every i maps to at at most one j
For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n

¬(xij1 ∧ xij2)

The mapping is 1-1
For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n

¬(xi1,j ∧ xi2,j)

Note So far all we’ve used about G is that it has n vertices.

Formula: The Edges are Preserved

We need that if i1 maps to j1 and i2 maps to j2 then (j1, j2) ∈ E .

For every 1 ≤ i1 < i2 ≤ k ∨
(j1,j2)∈E

xi1j1 ∧ xi2j2 .

Formula: The Edges are Preserved

We need that if i1 maps to j1 and i2 maps to j2 then (j1, j2) ∈ E .

For every 1 ≤ i1 < i2 ≤ k ∨
(j1,j2)∈E

xi1j1 ∧ xi2j2 .

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).

▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.

▶ Upshot: probably really good on sparse graphs.

How Big is the Formula

We state the parts of the formula and how long they are.

For 1 ≤ i ≤ k : xi1 ∨ xi2 ∨ · · · ∨ xin. O(kn).

For 1 ≤ i ≤ k , for 1 ≤ j1 < j2 ≤ n ¬(xij1 ∧ xij2). O(kn2)

For 1 ≤ i1 < i2 ≤ k , for 1 ≤ j ≤ n ¬(xi1,j ∧ xi2,j). O(k2n)

For every 1 ≤ i1 < i2 ≤ k ,
∨

(j1,j2)∈E xi1j1 ∧ xi2j2 . O(k2|E |)

▶ The formula is of size O(kn2) + O(k2n) + O(k2|E |).
▶ The construction is easy to do. Isaac could code this up.

▶ The constants are small.

▶ Usually k ≪ n so the real issue is the n2 and the |E |.
▶ Upshot: probably really good on sparse graphs.

