Exposition by William Gasarch—U of MD

Bill Today we will prove $CLIQ \leq SAT$.

Bill Today we will prove $CLIQ \leq SAT$.

Isaac That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Today we will prove $CLIQ \leq SAT$.

Isaac That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

$$(G, k) \in CLIQ \text{ iff } \phi \in SAT$$

Bill Today we will prove $CLIQ \leq SAT$.

Isaac That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

$$(G, k) \in CLIQ \text{ iff } \phi \in SAT$$

Isaac Deal with Turing Machines? That's **insane!**

Bill Today we will prove $CLIQ \leq SAT$.

Isaac That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

$$(G, k) \in CLIQ \text{ iff } \phi \in SAT$$

Isaac Deal with Turing Machines? That's insane!

Bill Correct. I will show $CLIQ \leq SAT$ in a sane way.

Bill Today we will prove $CLIQ \leq SAT$.

Isaac That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

$$(G, k) \in CLIQ \text{ iff } \phi \in SAT$$

Isaac Deal with Turing Machines? That's insane!

Bill Correct. I will show $CLIQ \leq SAT$ in a **sane** way.

Isaac Why? Not practical since SAT is hard. Not theoretically interesting since we already know $\mathrm{CLIQ} \leq \mathrm{SAT}$.

Bill Today we will prove $CLIQ \leq SAT$.

Isaac That's stupid! We know $CLIQ \leq SAT$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

$$(G, k) \in CLIQ \text{ iff } \phi \in SAT$$

Isaac Deal with Turing Machines? That's insane!

Bill Correct. I will show $CLIQ \leq SAT$ in a **sane** way.

Isaac Why? Not practical since SAT is hard. Not theoretically interesting since we already know $CLIQ \leq SAT$.

Bill Because there are awesome SAT Solvers!

Old View I want to solve CLIQ. Since $\mathrm{SAT} \leq \mathrm{CLIQ}, \ \mathrm{CLIQ}$ is probably hard. Darn!

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}.$

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}.$

That reduction is insane (hard and blow up).

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}.$

That reduction is insane (hard and blow up).

If I can find a better reduction of ${\rm CLIQ} \leq {\rm SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}.$

That reduction is insane (hard and blow up).

If I can find a better reduction of ${\rm CLIQ} \leq {\rm SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}.$

That reduction is insane (hard and blow up).

If I can find a better reduction of ${\rm CLIQ} \leq {\rm SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.

Old View I want to solve CLIQ. Since $SAT \leq CLIQ$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\mathrm{CLIQ} \leq \mathrm{SAT}.$

That reduction is insane (hard and blow up).

If I can find a better reduction of ${\rm CLIQ} \leq {\rm SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

- 1. SAT solvers are only good on some problems.
- 2. Getting the reductions to not blow up is not always possible.

Does G have a clique of size k?

Does G have a clique of size k? We rephrase that:

Does G have a clique of size k?

We rephrase that:

Let
$$G = (V, E)$$
.

Does G have a clique of size k?

We rephrase that:

Let
$$G = (V, E)$$
.

G has a clique of size *k* is **equivalent** to:

There is a 1-1 function $\{1, \ldots, k\} \to V$ such that for all $1 \le a, b \le k$, $(f(a), f(b)) \in E$.

CLIQ < SAT

We want to know:

Is there a 1-1 function $\{1,\ldots,k\}\to V$ such that for all $1\leq a,b\leq k$, $(f(a),f(b))\in E$.

We want to know:

Is there a 1-1 function $\{1,\ldots,k\}\to V$ such that for all $1\leq a,b\leq k$, $(f(a),f(b))\in \mathcal{E}.$

We formulate this as a Boolean Formula.

We want to know:

Is there a 1-1 function $\{1,\ldots,k\}\to V$ such that for all $1\leq a,b\leq k$, $(f(a),f(b))\in E$.

We formulate this as a Boolean Formula.

For $1 \le i \le k$, $1 \le j \le n$, have Boolean Vars x_{ij} .

We want to know:

Is there a 1-1 function $\{1,\ldots,k\} \to V$ such that for all $1 \le a,b \le k$, $(f(a),f(b)) \in E$.

We formulate this as a Boolean Formula.

For $1 \le i \le k$, $1 \le j \le n$, have Boolean Vars x_{ij} .

Intent

$$x_{ij} = \begin{cases} T & \text{if numb } i \text{ maps to vertex } j \\ F & \text{if numb } i \text{ does not maps to vertex } j \end{cases}$$
 (1)

The formula is in diff parts to guarantee diff things.

The formula is in diff parts to guarantee diff things.

Every i maps to at least one jFor $1 \le i \le k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

The formula is in diff parts to guarantee diff things.

Every *i* maps to at least one *j* For $1 \le i \le k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

Every *i* maps to at at most one *j* For $1 \le i \le k$, for $1 \le j_1 < j_2 \le n$

$$\neg(x_{ij_1} \wedge x_{ij_2})$$

The formula is in diff parts to guarantee diff things.

Every i maps to at least one jFor 1 < i < k

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

Every *i* maps to at at most one *j* For $1 \le i \le k$, for $1 \le j_1 \le j_2 \le n$

$$\neg(x_{ij_1} \wedge x_{ij_2})$$

The mapping is 1-1

For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n$

$$\neg(x_{i_1,j} \land x_{i_2,j})$$

The formula is in diff parts to guarantee diff things.

Every i maps to at least one jFor $1 \le i \le k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

Every *i* maps to at at most one *j* For $1 \le i \le k$, for $1 \le j_1 \le j_2 \le n$

$$\neg(x_{ij_1} \wedge x_{ij_2})$$

The mapping is 1-1

For $1 \le i_1 < i_2 \le k$, for $1 \le j \le n$

$$\neg(x_{i_1,j} \land x_{i_2,j})$$

Note So far all we've used about G is that it has n vertices.

Formula: The Edges are Preserved

We need that if i_1 maps to j_1 and i_2 maps to j_2 then $(j_1, j_2) \in E$.

Formula: The Edges are Preserved

We need that if i_1 maps to j_1 and i_2 maps to j_2 then $(j_1, j_2) \in E$. For every $1 \le i_1 < i_2 \le k$

$$\bigvee_{(j_1,j_2)\in E} x_{i_1j_1} \wedge x_{i_2j_2}.$$

We state the parts of the formula and how long they are.

For $1 \le i \le k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. O(kn).

For
$$1 \le i \le k$$
: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i \le k$$
: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \ \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For
$$1 \leq i \leq k$$
: $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2 n)$

For every
$$1 \le i_1 < i_2 \le k$$
, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \wedge x_{i_2j_2}$. $O(k^2|E|)$

We state the parts of the formula and how long they are.

For
$$1 \le i \le k$$
: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \ \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every
$$1 \le i_1 < i_2 \le k$$
, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \wedge x_{i_2j_2}$. $O(k^2|E|)$

► The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.

For
$$1 \leq i \leq k$$
: $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every
$$1 \le i_1 < i_2 \le k$$
, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- ► The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- ► The construction is easy to do. Isaac **could** code this up.

For
$$1 \leq i \leq k$$
: $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every
$$1 \le i_1 < i_2 \le k$$
, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \wedge x_{i_2j_2}$. $O(k^2|E|)$

- ► The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- ► The construction is easy to do. Isaac **could** code this up.
- The constants are small.

For
$$1 \leq i \leq k$$
: $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every
$$1 \le i_1 < i_2 \le k$$
, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \wedge x_{i_2j_2}$. $O(k^2|E|)$

- ► The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- ► The construction is easy to do. Isaac **could** code this up.
- The constants are small.
- ▶ Usually $k \ll n$ so the real issue is the n^2 and the |E|.

For
$$1 \leq i \leq k$$
: $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$. $O(kn)$.

For
$$1 \le i \le k$$
, for $1 \le j_1 < j_2 \le n \ \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For
$$1 \le i_1 < i_2 \le k$$
, for $1 \le j \le n \ \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every
$$1 \le i_1 < i_2 \le k$$
, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \wedge x_{i_2j_2}$. $O(k^2|E|)$

- ► The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- ► The construction is easy to do. Isaac **could** code this up.
- The constants are small.
- ▶ Usually $k \ll n$ so the real issue is the n^2 and the |E|.
- Upshot: probably really good on sparse graphs.